DICOM LUT is a Key Step in Medical Image Preprocessing Towards AI Generalizability

计算机科学 过度拟合 概化理论 人工智能 预处理器 DICOM 机器学习 深度学习 查阅表格 数据挖掘 原始数据 像素 人工神经网络 程序设计语言 统计 数学
作者
Theo Dapamede,Frank Li,Bardia Khosravi,Saptarshi Purkayastha,Hari Trivedi,Judy Wawira Gichoya
标识
DOI:10.1007/s10278-025-01418-5
摘要

Image pre-processing has significant impact on performance of deep learning models in medicine; yet, there is no standardized method for DICOM pre-processing. In this study, we investigate the impact of two commonly used image preprocessing techniques, histogram equalization (HE) and values-of-interest look-up-table (VOI-LUT) transformations on the performance deep learning classifiers for chest X-rays (CXR). We generated two baseline datasets (raw pixel and standard DICOM processed) from our internal CXR dataset and then enhanced both with HE to create four distinct datasets. Four independent deep learning models for diagnosis of pneumothorax were trained and evaluated on two external datasets. Results reveal that HE enhancement significantly affects model performance, particularly in terms of generalizability. Models trained solely on HE-enhanced datasets exhibit poorer performance on external validation sets, suggesting potential overfitting and information loss. These models also exhibit shortcut learning, relying on spurious correlations in the training data for their prediction. This study highlights the importance of machine learning practitioners being aware of preprocessing techniques applied to datasets and their potential impacts on model performance, as well as need for including preprocessing information when sharing datasets. Additionally, this research underscores the necessity of using pixel values closer to clinical standards during dataset curation to improve model robustness and mitigate the risk of information loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助优秀白曼采纳,获得10
刚刚
张卓发布了新的文献求助10
1秒前
爆米花应助陳拾壹采纳,获得10
2秒前
2秒前
5秒前
酪酪Alona发布了新的文献求助10
5秒前
6秒前
残云散人完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
淡竹完成签到,获得积分10
7秒前
李健应助李某采纳,获得10
8秒前
慕青应助23xyke采纳,获得10
8秒前
无花果应助启航采纳,获得10
8秒前
鳗鱼摇伽完成签到,获得积分10
8秒前
8秒前
8秒前
852应助古大帅哥采纳,获得10
9秒前
顾矜应助夹心饼干采纳,获得10
9秒前
zxy完成签到,获得积分10
9秒前
10秒前
10秒前
莫言发布了新的文献求助10
10秒前
我要吃挂面完成签到,获得积分10
10秒前
10秒前
科目三应助zoushiyi采纳,获得10
11秒前
chengxue发布了新的文献求助30
11秒前
11秒前
大个应助鳗鱼摇伽采纳,获得10
12秒前
12秒前
12秒前
王洁发布了新的文献求助20
13秒前
13秒前
qwe1108发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助80
14秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074392
求助须知:如何正确求助?哪些是违规求助? 4294523
关于积分的说明 13381522
捐赠科研通 4115896
什么是DOI,文献DOI怎么找? 2253991
邀请新用户注册赠送积分活动 1258605
关于科研通互助平台的介绍 1191479