Enhancing Chest X-ray Diagnosis with a Multimodal Deep Learning Network by Integrating Clinical History to Refine Attention

深度学习 计算机科学 人工智能 医学物理学 医学
作者
Lian Yang,Yiliang Wan,Feng Pan
标识
DOI:10.1007/s10278-025-01446-1
摘要

The rapid advancements of deep learning technology have revolutionized medical imaging diagnosis. However, training these models is often challenged by label imbalance and the scarcity of certain diseases. Most models fail to recognize multiple coexisting diseases, which are common in real-world clinical scenarios. Moreover, most radiological models rely solely on image data, which contrasts with radiologists' comprehensive approach, incorporating both images and other clinical information such as clinical history and laboratory results. In this study, we introduce a Multimodal Chest X-ray Network (MCX-Net) that integrates chest X-ray images and clinical history texts for multi-label disease diagnosis. This integration is achieved by combining a pretrained text encoder, a pretrained image encoder, and a pretrained image-text cross-modal encoder, fine-tuned on the public MIMIC-CXR-JPG dataset, to diagnose 13 diverse lung diseases on chest X-rays. As a result, MCX-Net achieved the highest macro AUROC of 0.816 on the test set, significantly outperforming unimodal baselines such as ViT-base and ResNet152, which scored 0.747 and 0.749, respectively (p < 0.001). This multimodal approach represents a substantial advancement over existing image-based deep-learning diagnostic systems for chest X-rays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Haonan完成签到,获得积分10
1秒前
he发布了新的文献求助10
2秒前
mount完成签到,获得积分10
2秒前
离希夷发布了新的文献求助10
2秒前
丘比特应助HM采纳,获得10
2秒前
凌云完成签到,获得积分10
3秒前
4秒前
Jerry完成签到,获得积分10
4秒前
哈哈哈哈完成签到,获得积分10
8秒前
8秒前
麦麦完成签到,获得积分10
9秒前
10秒前
CY完成签到,获得积分10
10秒前
杀破狼完成签到,获得积分20
11秒前
11秒前
大模型应助发发采纳,获得10
11秒前
ty完成签到,获得积分10
14秒前
千寻完成签到,获得积分10
14秒前
阡陌完成签到,获得积分10
14秒前
fzzf发布了新的文献求助10
14秒前
小明应助周毅采纳,获得10
16秒前
哈哈哈哈发布了新的文献求助10
16秒前
zlx发布了新的文献求助10
17秒前
17秒前
浮游应助come采纳,获得10
18秒前
共享精神应助杀破狼采纳,获得10
18秒前
橙子完成签到 ,获得积分10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
18秒前
OOO完成签到,获得积分20
18秒前
浮游应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
夏昱应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494670
求助须知:如何正确求助?哪些是违规求助? 4592359
关于积分的说明 14436596
捐赠科研通 4525161
什么是DOI,文献DOI怎么找? 2479240
邀请新用户注册赠送积分活动 1464059
关于科研通互助平台的介绍 1437129