Sequence-Defined DNA Polymers: New Tools for DNA Nanotechnology and Nucleic Acid Therapy

DNA纳米技术 超分子化学 DNA折纸 DNA 纳米技术 堆积 材料科学 超分子聚合物 粘而钝的末端 序列(生物学) 聚合物 自组装 碱基对 纳米结构 分子 化学 有机化学 复合材料 生物化学
作者
Muhammad Ghufran Rafique,Quentin Laurent,Michael D. Dore,Hassan H. Fakih,Tuan Trinh,Felix J. Rizzuto,Hanadi F. Sleiman
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:58 (2): 177-188 被引量:3
标识
DOI:10.1021/acs.accounts.4c00580
摘要

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.Here we describe our research group's work to integrate these orthogonal interactions into DNA and its supramolecular assemblies. Using automated solid phase techniques, we synthesized sequence-defined DNA polymers (SDPs) featuring a wide range of functional groups, achieving high yields in the process. These SDPs can assemble into not only isotropic spherical morphologies─such as spherical nucleic acids (SNAs)─but also into anisotropic nanostructures such as 1D nanofibers and 2D nanosheets. Our structural and molecular modeling studies revealed new insights into intermolecular chain packing and intramolecular chain folding, influenced by phosphodiester positioning and SDP sequence. Using these new self-assembly paradigms, we created hierarchical, anisotropic assemblies and developed systems exhibiting polymorphism and chiroptical behavior dependent on the SDP sequence. We could also precisely control the size of our nanofiber assemblies via nucleation-growth supramolecular polymerization and create compartmentalized nanostructures capable of precise surface functionalization.The exquisite control over sequence, composition, and length allowed us to combine our SDPs with nanostructures including DNA wireframe assemblies such as prisms, nanotubes, and cubes to create hybrid, stimuli-responsive assemblies exhibiting emergent structural and functional modes. The spatial control of our assemblies enabled their use as nanoreactors for chemical transformations in several ways: via hybridization chain reaction within SNA coronas, through chemical conjugation within SNA cores, and through a molecular "printing" approach within wireframe assemblies for nanoscale information transfer and the creation of anisotropic "DNA-printed" polymer particles.We have also employed our SDP nanostructures toward biological and therapeutic applications. We demonstrated that our SNAs could serve as both extrinsic and intrinsic therapeutic platforms, with improved cellular internalization and biodistribution profiles, and excellent gene silencing activities. Using SDPs incorporating hydrophobic dendrons, high-affinity and highly specific oligonucleotide binding to human serum albumin was demonstrated. These structures showed an increased stability to nuclease degradation, reduced nonspecific cellular uptake, no toxicity even at high concentrations, and excellent biodistribution beyond the liver, resulting in unprecedented gene silencing activity in various tissues.Control over the sequence has thus presented us with a unique polymeric building block in the form of the SDP, which combines the chemical and structural diversity of polymers with the programmability of DNA. By linking these orthogonal assembly languages, we have discovered new self-assembly rules, created DNA-minimal nanostructures, and demonstrated their utility through a range of applications. Developing this work further will open new avenues in the fields of DNA nanomaterials, nucleic acid therapeutics, as well as block copolymer self-assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xzza完成签到,获得积分10
3秒前
5秒前
5秒前
你好啊完成签到,获得积分10
5秒前
Lucky发布了新的文献求助10
9秒前
tt完成签到 ,获得积分10
10秒前
隐形曼青应助小鞠采纳,获得10
12秒前
赘婿应助聪慧橘子采纳,获得10
12秒前
18秒前
TonyLee完成签到,获得积分10
20秒前
小鞠发布了新的文献求助10
23秒前
24秒前
甜美冷雁完成签到,获得积分10
26秒前
爆米花应助明理迎曼采纳,获得10
27秒前
28秒前
yihao完成签到 ,获得积分10
31秒前
聪慧橘子发布了新的文献求助10
32秒前
33秒前
36秒前
36秒前
37秒前
匆匆完成签到 ,获得积分10
38秒前
38秒前
聪慧橘子完成签到,获得积分10
40秒前
山复尔尔发布了新的文献求助10
41秒前
Trtr7985发布了新的文献求助10
42秒前
老北京发布了新的文献求助10
43秒前
柚子发布了新的文献求助10
43秒前
斯文败类应助科研通管家采纳,获得20
44秒前
汉堡包应助科研通管家采纳,获得10
44秒前
烟花应助科研通管家采纳,获得30
44秒前
星辰大海应助科研通管家采纳,获得10
44秒前
11发布了新的文献求助10
44秒前
上官若男应助科研通管家采纳,获得10
45秒前
小蘑菇应助科研通管家采纳,获得10
45秒前
SciGPT应助科研通管家采纳,获得10
45秒前
小二郎应助科研通管家采纳,获得30
45秒前
45秒前
科目三应助科研通管家采纳,获得10
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4166333
求助须知:如何正确求助?哪些是违规求助? 3702032
关于积分的说明 11687037
捐赠科研通 3390440
什么是DOI,文献DOI怎么找? 1859310
邀请新用户注册赠送积分活动 919666
科研通“疑难数据库(出版商)”最低求助积分说明 832328