Sequence-Defined DNA Polymers: New Tools for DNA Nanotechnology and Nucleic Acid Therapy

DNA纳米技术 超分子化学 DNA折纸 DNA 纳米技术 堆积 材料科学 超分子聚合物 粘而钝的末端 序列(生物学) 聚合物 自组装 碱基对 纳米结构 分子 化学 有机化学 复合材料 生物化学
作者
Muhammad Ghufran Rafique,Quentin Laurent,Michael D. Dore,Hassan H. Fakih,Tuan Trinh,Felix J. Rizzuto,Hanadi F. Sleiman
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:58 (2): 177-188 被引量:1
标识
DOI:10.1021/acs.accounts.4c00580
摘要

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.Here we describe our research group's work to integrate these orthogonal interactions into DNA and its supramolecular assemblies. Using automated solid phase techniques, we synthesized sequence-defined DNA polymers (SDPs) featuring a wide range of functional groups, achieving high yields in the process. These SDPs can assemble into not only isotropic spherical morphologies─such as spherical nucleic acids (SNAs)─but also into anisotropic nanostructures such as 1D nanofibers and 2D nanosheets. Our structural and molecular modeling studies revealed new insights into intermolecular chain packing and intramolecular chain folding, influenced by phosphodiester positioning and SDP sequence. Using these new self-assembly paradigms, we created hierarchical, anisotropic assemblies and developed systems exhibiting polymorphism and chiroptical behavior dependent on the SDP sequence. We could also precisely control the size of our nanofiber assemblies via nucleation-growth supramolecular polymerization and create compartmentalized nanostructures capable of precise surface functionalization.The exquisite control over sequence, composition, and length allowed us to combine our SDPs with nanostructures including DNA wireframe assemblies such as prisms, nanotubes, and cubes to create hybrid, stimuli-responsive assemblies exhibiting emergent structural and functional modes. The spatial control of our assemblies enabled their use as nanoreactors for chemical transformations in several ways: via hybridization chain reaction within SNA coronas, through chemical conjugation within SNA cores, and through a molecular "printing" approach within wireframe assemblies for nanoscale information transfer and the creation of anisotropic "DNA-printed" polymer particles.We have also employed our SDP nanostructures toward biological and therapeutic applications. We demonstrated that our SNAs could serve as both extrinsic and intrinsic therapeutic platforms, with improved cellular internalization and biodistribution profiles, and excellent gene silencing activities. Using SDPs incorporating hydrophobic dendrons, high-affinity and highly specific oligonucleotide binding to human serum albumin was demonstrated. These structures showed an increased stability to nuclease degradation, reduced nonspecific cellular uptake, no toxicity even at high concentrations, and excellent biodistribution beyond the liver, resulting in unprecedented gene silencing activity in various tissues.Control over the sequence has thus presented us with a unique polymeric building block in the form of the SDP, which combines the chemical and structural diversity of polymers with the programmability of DNA. By linking these orthogonal assembly languages, we have discovered new self-assembly rules, created DNA-minimal nanostructures, and demonstrated their utility through a range of applications. Developing this work further will open new avenues in the fields of DNA nanomaterials, nucleic acid therapeutics, as well as block copolymer self-assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liyf完成签到,获得积分10
1秒前
MapleLeaf发布了新的文献求助10
1秒前
2021发布了新的文献求助10
2秒前
2秒前
Akim应助敏感初露采纳,获得10
2秒前
2秒前
3秒前
3秒前
吴振明完成签到,获得积分10
3秒前
暖杨羊完成签到,获得积分10
3秒前
苗惜霜完成签到,获得积分10
3秒前
3秒前
wanci应助LW采纳,获得10
3秒前
3秒前
lty发布了新的文献求助10
4秒前
大气的火龙果完成签到 ,获得积分10
5秒前
PZQS完成签到,获得积分10
5秒前
外科医生完成签到,获得积分10
5秒前
章鱼完成签到,获得积分10
5秒前
Haha发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
zSmart发布了新的文献求助10
7秒前
NA完成签到,获得积分10
7秒前
8秒前
8秒前
活泼以冬发布了新的文献求助10
8秒前
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
冰魂应助科研通管家采纳,获得10
9秒前
英俊的铭应助LLL20240701采纳,获得10
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818180
求助须知:如何正确求助?哪些是违规求助? 3361331
关于积分的说明 10412348
捐赠科研通 3079520
什么是DOI,文献DOI怎么找? 1691267
邀请新用户注册赠送积分活动 814471
科研通“疑难数据库(出版商)”最低求助积分说明 768178