清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sequence-Defined DNA Polymers: New Tools for DNA Nanotechnology and Nucleic Acid Therapy

DNA纳米技术 超分子化学 DNA折纸 DNA 纳米技术 堆积 材料科学 超分子聚合物 粘而钝的末端 序列(生物学) 聚合物 自组装 碱基对 纳米结构 分子 化学 有机化学 复合材料 生物化学
作者
Muhammad Ghufran Rafique,Quentin Laurent,Michael D. Dore,Hassan H. Fakih,Tuan Trinh,Felix J. Rizzuto,Hanadi F. Sleiman
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:58 (2): 177-188 被引量:4
标识
DOI:10.1021/acs.accounts.4c00580
摘要

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.Here we describe our research group's work to integrate these orthogonal interactions into DNA and its supramolecular assemblies. Using automated solid phase techniques, we synthesized sequence-defined DNA polymers (SDPs) featuring a wide range of functional groups, achieving high yields in the process. These SDPs can assemble into not only isotropic spherical morphologies─such as spherical nucleic acids (SNAs)─but also into anisotropic nanostructures such as 1D nanofibers and 2D nanosheets. Our structural and molecular modeling studies revealed new insights into intermolecular chain packing and intramolecular chain folding, influenced by phosphodiester positioning and SDP sequence. Using these new self-assembly paradigms, we created hierarchical, anisotropic assemblies and developed systems exhibiting polymorphism and chiroptical behavior dependent on the SDP sequence. We could also precisely control the size of our nanofiber assemblies via nucleation-growth supramolecular polymerization and create compartmentalized nanostructures capable of precise surface functionalization.The exquisite control over sequence, composition, and length allowed us to combine our SDPs with nanostructures including DNA wireframe assemblies such as prisms, nanotubes, and cubes to create hybrid, stimuli-responsive assemblies exhibiting emergent structural and functional modes. The spatial control of our assemblies enabled their use as nanoreactors for chemical transformations in several ways: via hybridization chain reaction within SNA coronas, through chemical conjugation within SNA cores, and through a molecular "printing" approach within wireframe assemblies for nanoscale information transfer and the creation of anisotropic "DNA-printed" polymer particles.We have also employed our SDP nanostructures toward biological and therapeutic applications. We demonstrated that our SNAs could serve as both extrinsic and intrinsic therapeutic platforms, with improved cellular internalization and biodistribution profiles, and excellent gene silencing activities. Using SDPs incorporating hydrophobic dendrons, high-affinity and highly specific oligonucleotide binding to human serum albumin was demonstrated. These structures showed an increased stability to nuclease degradation, reduced nonspecific cellular uptake, no toxicity even at high concentrations, and excellent biodistribution beyond the liver, resulting in unprecedented gene silencing activity in various tissues.Control over the sequence has thus presented us with a unique polymeric building block in the form of the SDP, which combines the chemical and structural diversity of polymers with the programmability of DNA. By linking these orthogonal assembly languages, we have discovered new self-assembly rules, created DNA-minimal nanostructures, and demonstrated their utility through a range of applications. Developing this work further will open new avenues in the fields of DNA nanomaterials, nucleic acid therapeutics, as well as block copolymer self-assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花完成签到 ,获得积分10
2秒前
之之完成签到,获得积分10
14秒前
25秒前
汉堡包应助xun采纳,获得10
25秒前
dapan0622完成签到,获得积分10
26秒前
不过尔尔完成签到 ,获得积分10
28秒前
和光同尘发布了新的文献求助10
32秒前
wujiwuhui完成签到 ,获得积分10
33秒前
40秒前
ww发布了新的文献求助10
44秒前
科研通AI6应助和光同尘采纳,获得30
46秒前
某某完成签到 ,获得积分10
53秒前
和光同尘完成签到,获得积分10
57秒前
毛毛完成签到,获得积分10
57秒前
wuqi完成签到 ,获得积分10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
飞翔的企鹅完成签到,获得积分10
1分钟前
小莫完成签到 ,获得积分10
1分钟前
ZHANG完成签到 ,获得积分10
1分钟前
ramsey33完成签到 ,获得积分10
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
John完成签到 ,获得积分10
2分钟前
六一儿童节完成签到 ,获得积分0
2分钟前
慧慧34完成签到 ,获得积分10
2分钟前
紫熊完成签到,获得积分10
2分钟前
曙光完成签到,获得积分10
2分钟前
林好人完成签到 ,获得积分10
2分钟前
Hh完成签到,获得积分10
2分钟前
lilylwy完成签到 ,获得积分0
2分钟前
HH完成签到,获得积分10
2分钟前
zxq完成签到 ,获得积分10
2分钟前
JOKER完成签到 ,获得积分10
3分钟前
王洋洋完成签到 ,获得积分10
3分钟前
3分钟前
千帆破浪完成签到 ,获得积分10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
lb发布了新的文献求助10
3分钟前
bo完成签到 ,获得积分10
3分钟前
siu完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4844961
求助须知:如何正确求助?哪些是违规求助? 4145095
关于积分的说明 12834005
捐赠科研通 3891813
什么是DOI,文献DOI怎么找? 2139346
邀请新用户注册赠送积分活动 1159315
关于科研通互助平台的介绍 1059990