Machine Learning and Mendelian Randomization Reveal Molecular Mechanisms and Causal Relationships of Immune‐Related Biomarkers in Periodontitis

牙周炎 孟德尔随机化 免疫系统 生物 计算生物学 基因 疾病 生物信息学 免疫学 遗传学 医学 基因型 病理 内科学 遗传变异
作者
Yuan Li,Bolun Zhang,D. D. Li,Yu Zhang,Yang Xue,Kongxin Hu
出处
期刊:Mediators of Inflammation [Hindawi Limited]
卷期号:2024 (1): 9983323-9983323 被引量:5
标识
DOI:10.1155/mi/9983323
摘要

This study aimed to investigate the molecular mechanisms of periodontitis and identify key immune‐related biomarkers using machine learning and Mendelian randomization (MR). Differentially expressed gene (DEG) analysis was performed on periodontitis datasets GSE16134 and GSE10334 from the Gene Expression Omnibus (GEO) database, followed by weighted gene co‐expression network analysis (WGCNA) to identify relevant gene modules. Various machine learning algorithms were utilized to construct predictive models, highlighting core genes, while MR assessed the causal relationships between these genes and periodontitis. Additionally, immune infiltration analysis and single‐cell sequencing were employed to explore the roles of key genes in immunity and their expression across different cell types. The integration of machine learning, MR, and single‐cell sequencing represents a novel approach that significantly enhances our understanding of the immune dynamics and gene interactions in periodontitis. The study identified 682 significant DEGs, with WGCNA revealing seven gene modules associated with periodontitis and 471 core candidate genes. Among the 113 machine learning algorithms tested, XGBoost was the most effective in identifying periodontitis samples, leading to the selection of 19 core genes. MR confirmed significant causal relationships between CD93, CD69, and CXCL6 and periodontitis. Further analysis showed that these genes were correlated with various immune cells and exhibited specific expression patterns in periodontitis tissues. The findings suggest that CD93, CD69, and CXCL6 are closely related to the progression of periodontitis, with MR confirming their causal links to the disease. These genes have potential applications in the diagnosis and treatment of periodontitis, offering new insights into the disease’s molecular mechanisms and providing valuable resources for precision medicine approaches in periodontitis management. Limitations of this study include the demographic and sample size constraints of the datasets, which may impact the generalizability of the findings. Future research is needed to validate these biomarkers in larger, diverse cohorts and to investigate their functional roles in the pathogenesis of periodontitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
randad完成签到,获得积分10
刚刚
ding应助文静的天蓝采纳,获得10
刚刚
jiafang完成签到,获得积分10
1秒前
爱笑的蘑菇完成签到,获得积分10
1秒前
mookie发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
梁业松发布了新的文献求助10
2秒前
2秒前
开放背包发布了新的文献求助30
3秒前
3秒前
3秒前
科研通AI6.1应助BlogY采纳,获得10
3秒前
信徒发布了新的文献求助10
3秒前
4秒前
LikM发布了新的文献求助10
5秒前
老实的冰巧完成签到,获得积分10
5秒前
UU发布了新的文献求助10
5秒前
HOAN给Done的求助进行了留言
9秒前
9秒前
木染发布了新的文献求助10
9秒前
9秒前
西木发布了新的文献求助30
10秒前
zzzzz完成签到,获得积分10
11秒前
11秒前
清平道人完成签到,获得积分10
11秒前
熊风发布了新的文献求助10
11秒前
humble完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Ava应助文艺的冬卉采纳,获得10
14秒前
潇洒闭月完成签到,获得积分10
14秒前
14秒前
彭于晏应助xukaixuan001采纳,获得10
15秒前
孤海未蓝完成签到,获得积分10
15秒前
F123发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750176
求助须知:如何正确求助?哪些是违规求助? 5462457
关于积分的说明 15365731
捐赠科研通 4889341
什么是DOI,文献DOI怎么找? 2629077
邀请新用户注册赠送积分活动 1577365
关于科研通互助平台的介绍 1533966