Deep Learning Approaches for Predicting Bioactivity of Natural Compounds

自然(考古学) 人工智能 传统医学 化学 计算机科学 生物 医学 古生物学
作者
Parixit Prajapati,Princy Shrivastav,Jigna B. Prajapati,Bhupendra G. Prajapati
出处
期刊:The Natural products journal [Bentham Science]
卷期号:16 (3)
标识
DOI:10.2174/0122103155332267241122143118
摘要

The investigation of computational techniques to forecast the bioactivity of natural substances has been spurred by the growing interest in utilizing their medicinal potential. A branch of artificial intelligence called deep learning (DL) has been particularly useful for predicting outcomes in a variety of fields, such as bioactivity prediction and drug discovery, by evaluating large amounts of complex data. An overview of current developments in the application of deep learning techniques to the prediction of natural chemical bioactivity has been presented in this article. The advantages provided by deep learning approaches, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs), have been highlighted, and the difficulties connected with conventional methods of bioactivity prediction have been examined. Moreover, a variety of molecular representations—such as molecular fingerprints, graph representations, and molecular descriptors—that are fed into deep learning models have been studied. Additionally, included in this study is the integration of many data sources, including omics data, chemical structures, and biological tests, to enhance the precision and resilience of bioactivity prediction models. Furthermore, this review covers the uses of deep learning in target prediction, virtual screening, and poly-pharmacology study of natural substances. The paper concludes by discussing the field's present issues and potential paths forward, such as the requirement for standardized benchmark datasets, the interpretability of deep learning models, and the incorporation of experimental validation techniques. All things considered, this study sheds light on the most recent developments in deep learning techniques for estimating the bioactivity of natural substances and their possible effects on drug development and discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得200
刚刚
浮游应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研小乞丐完成签到,获得积分10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
1秒前
Sakurazuihaol完成签到,获得积分20
1秒前
辣椒面完成签到,获得积分10
1秒前
wan完成签到,获得积分10
2秒前
苦行僧完成签到,获得积分10
3秒前
3秒前
3秒前
干净的石头完成签到,获得积分10
3秒前
缓慢咖啡完成签到,获得积分10
3秒前
高高饼干发布了新的文献求助30
4秒前
4秒前
4秒前
自强不息发布了新的文献求助10
6秒前
Syzzzjj发布了新的文献求助30
6秒前
赘婿应助syx采纳,获得10
6秒前
今日阅读量几何完成签到,获得积分20
7秒前
无芒发布了新的文献求助10
7秒前
8秒前
辣椒面发布了新的文献求助10
8秒前
dio发布了新的文献求助10
9秒前
9秒前
9秒前
美好书瑶发布了新的文献求助10
9秒前
10秒前
体贴嫣娆发布了新的文献求助10
10秒前
七七发布了新的社区帖子
10秒前
10秒前
知栀完成签到 ,获得积分10
11秒前
11秒前
Lucas应助ChenxiPan采纳,获得10
12秒前
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351421
求助须知:如何正确求助?哪些是违规求助? 4484506
关于积分的说明 13959313
捐赠科研通 4384100
什么是DOI,文献DOI怎么找? 2408752
邀请新用户注册赠送积分活动 1401355
关于科研通互助平台的介绍 1374851