MiR164a-targeted NAM3 inhibits thermotolerance in tomato by regulating HSFA4b-mediated redox homeostasis

基因沉默 龙葵 活性氧 生物 热休克蛋白 突变体 细胞生物学 小RNA 氧化应激 基因 基因表达调控 生物化学 植物
作者
Zelan Huang,Rui Lin,Yufei Dong,Mingjia Tang,Xiaojian Xia,Lei Fang,Jingquan Yu,Huijia Kang,Yanhong Zhou
出处
期刊:Plant Physiology [Oxford University Press]
标识
DOI:10.1093/plphys/kiaf113
摘要

Abstract Extreme weather events, including high temperatures, frequently occur and adversely affect crop growth, posing substantial challenges to global agriculture. MicroRNAs (miRNAs) play integral roles in regulating plant growth and responses to various stresses. In this study, we reveal that microRNA164a (miR164a) in tomato (Solanum lycopersicum) is a pivotal element that exhibits a rapid positive response to heat stress (HS) among multiple miRNAs, while its target NO APICAL MERISTEM 3 (NAM3) shows an opposite complementary response. MiR164a/b-5p-deficient mutant and NAM3-overexpressing plants resulted in increased sensitivity to HS, whereas mutants with reduced NAM3 levels exhibited enhanced thermotolerance. Importantly, HS-induced reactive oxygen species (ROS) accumulation and antioxidant enzyme activities were positively regulated by miR164a and negatively by NAM3, respectively. Furthermore, we demonstrated that NAM3 transcriptionally activated the expression of HSFA4b, and silencing HSFA4b improved tomato thermotolerance. HSFA4b repressed the expression of the antioxidant gene APX1 and the heat shock protein (HSP) gene HSP90, disrupting redox homeostasis and exacerbating oxidative stress. Our findings unveil a pivotal regulatory pathway governed by the miR164a-NAM3 module that confers thermotolerance in tomato via its influence on ROS-related and HSP pathways. These findings provide valuable insights into the molecular mechanisms that underpin tomato thermotolerance, which are crucial for advancing sustainable agricultural practices, particularly in the face of the challenges presented by global climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
齐欢完成签到,获得积分10
刚刚
lynn完成签到 ,获得积分10
刚刚
已经会了完成签到,获得积分20
刚刚
游小白完成签到,获得积分10
1秒前
打打应助昏睡的JIA采纳,获得30
1秒前
兜有米完成签到,获得积分10
1秒前
研友_VZG7GZ应助小小森采纳,获得10
1秒前
FashionBoy应助zhangzhangZZZ采纳,获得10
2秒前
云淡风轻发布了新的文献求助30
2秒前
科研通AI6应助下次见采纳,获得10
2秒前
香蕉觅云应助WWZ采纳,获得10
3秒前
3秒前
咎穆完成签到,获得积分10
3秒前
还好完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
嘻嘻完成签到,获得积分10
4秒前
Owen应助热爱和山海采纳,获得10
4秒前
大个应助从容的采梦采纳,获得10
5秒前
上官若男应助chx8830316采纳,获得10
6秒前
Shirky发布了新的文献求助10
6秒前
流流124141完成签到,获得积分10
7秒前
8秒前
8秒前
大知闲闲完成签到,获得积分10
8秒前
赘婿应助宣智采纳,获得10
9秒前
9秒前
小蚂蚁发布了新的文献求助10
9秒前
10秒前
郭mm发布了新的文献求助10
10秒前
药石无医发布了新的文献求助10
10秒前
WWZ完成签到,获得积分10
11秒前
ldkl应助Shirky采纳,获得50
11秒前
可爱的函函应助赛特特特采纳,获得10
11秒前
小小森完成签到,获得积分10
11秒前
12秒前
12秒前
科研通AI6应助huk采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384568
求助须知:如何正确求助?哪些是违规求助? 3877805
关于积分的说明 12079791
捐赠科研通 3521208
什么是DOI,文献DOI怎么找? 1932416
邀请新用户注册赠送积分活动 973680
科研通“疑难数据库(出版商)”最低求助积分说明 871863