Long Short-Term Knowledge Decomposition and Consolidation for Lifelong Person Re-Identification

人工智能 计算机科学 期限(时间) 鉴定(生物学) 合并(业务) 机器学习 模式识别(心理学) 物理 生物 量子力学 业务 会计 植物
作者
Kunlun Xu,Z. Liu,Xu Zou,Yuxin Peng,Jiahuan Zhou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (9): 7796-7811
标识
DOI:10.1109/tpami.2025.3572468
摘要

Lifelong person re-identification (LReID) aims to learn from streaming data sources step by step, which suffers from the catastrophic forgetting problem. In this paper, we investigate the exemplar-free LReID setting where no previous exemplar is available during the new step training. Existing exemplar-free LReID methods primarily adopt knowledge distillation to transfer knowledge from an old model to a new one without selection, inevitably introducing erroneous and detrimental information that hinders new knowledge learning. Furthermore, not all critical knowledge can be transferred due to the absence of old data, leading to the permanent loss of undistilled knowledge. To address these limitations, we propose a novel exemplar-free LReID method named Long Short-Term Knowledge Decomposition and Consolidation (LSTKC++). Specifically, an old knowledge rectification mechanism is developed to rectify the old model predictions based on new data annotations, ensuring correct knowledge transfer. Besides, a long-term knowledge consolidation strategy is designed, which first estimates the degree of old knowledge forgetting by leveraging the output difference between the old and new models. Then, a knowledge-guided parameter fusion strategy is developed to balance new and old knowledge, improving long-term knowledge retention. Upon these designs, considering LReID models tend to be biased on the latest seen domains, the fusion weights generated by this process often lead to sub-optimal knowledge balancing. To settle this, we further propose to decompose a single old model into two parts: a long-term old model containing multi-domain knowledge and a short-term model focusing on the latest short-term old knowledge. Then, the incoming new data are explored as an unbiased reference to adjust the old models' fusion weight to achieve backward optimization. Furthermore, an extended complementary knowledge rectification mechanism is developed to mine and retain the correct knowledge in the decomposed models. Extensive experimental results demonstrate that LSTKC++ significantly outperforms state-of-the-art methods by large margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nzh发布了新的文献求助20
刚刚
wjh发布了新的文献求助10
2秒前
淡淡烙完成签到,获得积分10
3秒前
tbtd发布了新的文献求助10
4秒前
坚果儿发布了新的文献求助10
4秒前
hhh发布了新的文献求助10
5秒前
小白发布了新的文献求助10
5秒前
尹冰之完成签到,获得积分10
6秒前
fufufuxia完成签到,获得积分20
6秒前
6秒前
7秒前
许鑫蓁发布了新的文献求助10
7秒前
科研通AI6应助徐枘采纳,获得10
7秒前
Jasper应助Begonia采纳,获得10
7秒前
染墨绘梨衣完成签到,获得积分10
7秒前
Zz完成签到,获得积分10
8秒前
饭神仙鱼完成签到,获得积分10
8秒前
yatou5651发布了新的文献求助30
9秒前
Toby完成签到,获得积分10
9秒前
9秒前
勤恳问薇完成签到 ,获得积分10
9秒前
大模型应助光亮熠彤采纳,获得10
10秒前
10秒前
10秒前
卓妮完成签到,获得积分10
10秒前
Spencer完成签到,获得积分10
10秒前
妮妮完成签到,获得积分10
10秒前
Ava应助林夕采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
Ava应助xiaop采纳,获得10
11秒前
12秒前
12秒前
ggun发布了新的文献求助10
13秒前
余思嫒发布了新的文献求助10
13秒前
情怀应助苗条班采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322