A Human–Machine Joint Learning Framework to Boost Endogenous BCI Training

脑-机接口 计算机科学 人工智能 机器学习 判别式 过程(计算) 脑电图 信号(编程语言) 神经科学 生物 操作系统 程序设计语言
作者
Hanwen Wang,Yu Qi,Lin Yao,Yueming Wang,Dario Farina,Gang Pan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2023.3305621
摘要

Brain-computer interfaces (BCIs) provide a direct pathway from the brain to external devices and have demonstrated great potential for assistive and rehabilitation technologies. Endogenous BCIs based on electroencephalogram (EEG) signals, such as motor imagery (MI) BCIs, can provide some level of control. However, mastering spontaneous BCI control requires the users to generate discriminative and stable brain signal patterns by imagery, which is challenging and is usually achieved over a very long training time (weeks/months). Here, we propose a human-machine joint learning framework to boost the learning process in endogenous BCIs, by guiding the user to generate brain signals toward an optimal distribution estimated by the decoder, given the historical brain signals of the user. To this end, we first model the human-machine joint learning process in a uniform formulation. Then a human-machine joint learning framework is proposed: 1) for the human side, we model the learning process in a sequential trial-and-error scenario and propose a novel "copy/new" feedback paradigm to help shape the signal generation of the subject toward the optimal distribution and 2) for the machine side, we propose a novel adaptive learning algorithm to learn an optimal signal distribution along with the subject's learning process. Specifically, the decoder reweighs the brain signals generated by the subject to focus more on "good" samples to cope with the learning process of the subject. Online and psuedo-online BCI experiments with 18 healthy subjects demonstrated the advantages of the proposed joint learning process over coadaptive approaches in both learning efficiency and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我不李姐完成签到,获得积分10
1秒前
芝士饼干完成签到,获得积分10
1秒前
幸福大碗完成签到,获得积分10
2秒前
3秒前
郦稀完成签到,获得积分10
5秒前
11秒前
13秒前
肖木木发布了新的文献求助10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
hjyylab应助科研通管家采纳,获得10
15秒前
赘婿应助大虫子采纳,获得10
15秒前
hjyylab应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
hjyylab应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
光年发布了新的文献求助10
16秒前
16秒前
BorisY发布了新的文献求助10
18秒前
19秒前
drwang完成签到,获得积分10
19秒前
海星发布了新的文献求助10
20秒前
SciGPT应助旧雨新知采纳,获得10
21秒前
only发布了新的文献求助50
21秒前
小五屁孩儿完成签到,获得积分10
22秒前
23秒前
25秒前
淼淼完成签到 ,获得积分10
27秒前
分析发布了新的文献求助10
27秒前
27秒前
上官绮兰发布了新的文献求助10
28秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844493
求助须知:如何正确求助?哪些是违规求助? 3386880
关于积分的说明 10546518
捐赠科研通 3107344
什么是DOI,文献DOI怎么找? 1711747
邀请新用户注册赠送积分活动 824152
科研通“疑难数据库(出版商)”最低求助积分说明 774573