Harnessing highly efficient triboelectric sensors and machine learning for self-powered intelligent security applications

摩擦电效应 压力传感器 计算机科学 灵敏度(控制系统) 材料科学 人工智能 纳米技术 电气工程 机械工程 电子工程 工程类 复合材料
作者
Hyun Sik Shin,Su Bin Choi,Jong‐Woong Kim
出处
期刊:Materials today advances [Elsevier BV]
卷期号:20: 100426-100426
标识
DOI:10.1016/j.mtadv.2023.100426
摘要

In the contemporary epoch, distinguished by a transition from the internet-of-things (IoT) to the artificial intelligence of things (AIoT), individual electronic appliances necessitate inherent power-generation, independence from internet connectivity, and an imbued degree of intellect. Devices governed by pressure or strain sensors particularly demand such attributes. Responding to this technological imperative, our study endeavored to conceive an intelligent door security apparatus grounded on the universally adopted numerical input system. Despite the commercialization of identification systems such as fingerprint, iris, or facial recognition, these mechanisms suffer from susceptibility to a variety of functional aberrations. Consequently, our investigation concentrated on a security system predicated on numerical input. This necessitated the formulation of a swift, self-powered pressure sensor characterized by sensitivity to minute pressure changes. As such, we engineered a triboelectric pressure sensor incorporating a composite of Ti3C2-based MXene and polydimethylsiloxane (PDMS) as the electronegative stratum, and Nylon functioning as the electropositive layer. Addressing the sensor's intrinsic deficiency in sensitivity to pressure, we augmented the MXene-PDMS composite's surface with an out-of-plane wavy structure, and utilized a Nylon stratum composed of nanofibers, thereby amplifying the contact area under pressurized conditions. This meticulously developed sensor displayed a sensitivity metric of 0.604 kPa−1 at 15 kPa, and notably, the swiftest response times recorded amongst triboelectric pressure sensors to date. Post attachment of the sensor to a numeric keypad (ranging from 0 to 9), we meticulously measured the signal alterations contingent on each key press, resulting in a comprehensive dataset. Employing a multitude of machine learning algorithms, we realized an exemplary degree of precision in both training and testing phases. The pragmatic implications of this work are noteworthy. Not only does our technology facilitate the unlocking of a door by entering the correct numerical code, but it is capable of recognizing distinct triboelectric signal patterns, corresponding to the specific manner of key entry by an authorized user, offering an additional dimension of security.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xul279完成签到,获得积分10
刚刚
leah完成签到 ,获得积分10
刚刚
善学以致用应助柯柯采纳,获得10
3秒前
mslln发布了新的文献求助10
4秒前
兔农糖完成签到,获得积分10
5秒前
独步出营完成签到 ,获得积分10
5秒前
6秒前
zero完成签到 ,获得积分10
8秒前
无敌吴硕完成签到,获得积分10
8秒前
斯文败类应助yjzzz采纳,获得10
9秒前
李健的小迷弟应助zhihua采纳,获得10
11秒前
烟花应助梓树采纳,获得30
11秒前
buciying发布了新的文献求助10
12秒前
科研通AI5应助旺旺采纳,获得10
12秒前
科研通AI5应助跳跃尔容采纳,获得10
12秒前
刘军发布了新的文献求助10
13秒前
mslln完成签到,获得积分10
16秒前
玉汝于成发布了新的文献求助10
18秒前
fxf完成签到,获得积分20
18秒前
18秒前
林洁佳完成签到,获得积分10
19秒前
天天快乐应助三十四画生采纳,获得10
20秒前
21秒前
22秒前
研友_ana完成签到,获得积分10
22秒前
23秒前
NexusExplorer应助圆芝麻采纳,获得10
25秒前
25秒前
peipei完成签到,获得积分10
25秒前
光年发布了新的文献求助10
25秒前
跳跃尔容发布了新的文献求助10
26秒前
27秒前
27秒前
28秒前
漂亮明辉发布了新的文献求助10
29秒前
小明完成签到 ,获得积分10
30秒前
30秒前
清风发布了新的文献求助10
31秒前
lyc发布了新的文献求助10
33秒前
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841977
求助须知:如何正确求助?哪些是违规求助? 3383977
关于积分的说明 10532118
捐赠科研通 3104189
什么是DOI,文献DOI怎么找? 1709550
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878