Enhancing cerebral vasculature analysis with pathlength‐corrected 2D angiographic parametric imaging: A feasibility study

投影(关系代数) 对比度(视觉) 探测器 光学 交叉口(航空) 分割 体素 参数统计 物理 计算机科学 计算机视觉 数学 算法 统计 工程类 航空航天工程
作者
Allison Shields,Kyle Williams,Mohammad Mahdi Shiraz Bhurwani,Swetadri Vasan Setlur Nagesh,Venkat Keshav Chivukula,Daniel R. Bednarek,Stephen Rudin,Jason M. Davies,Adnan H. Siddiqui,Ciprian N. Ionita
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2633-2647 被引量:3
标识
DOI:10.1002/mp.16808
摘要

Abstract Background 2D angiographic parametric imaging (API) quantitatively extracts imaging biomarkers related to contrast flow and is conventionally applied to 2D digitally subtracted angiograms (DSA's). In the interventional suite, API is typically performed using 1–2 projection views and is limited by vessel overlap, foreshortening, and depth‐integration of contrast motion. Purpose This work explores the use of a pathlength‐correction metric to overcome the limitations of 2D‐API: the primary objective was to study the effect of converting 3D contrast flow to projected contrast flow using a simulated angiographic framework created with computational fluid dynamics (CFD) simulations, thereby removing acquisition variability. Methods The pathlength‐correction framework was applied to in‐silico angiograms, generating a reference (i.e., ground‐truth) volumetric contrast distribution in four patient‐specific intracranial aneurysm geometries. Biplane projections of contrast flow were created from the reference volumetric contrast distributions, assuming a cone‐beam geometry. A Parker‐weighted reconstruction was performed to obtain a binary representation of the vessel structure in 3D. Standard ray tracing techniques were then used to track the intersection of a ray from the focal spot with each voxel of the reconstructed vessel wall to a pixel in the detector plane. The lengths of each ray through the 3D vessel lumen were then projected along each ray‐path to create a pathlength‐correction map, where the pixel intensity in the detector plane corresponds to the vessel width along each source‐detector ray. By dividing the projection sequences with this correction map, 2D pathlength‐corrected in‐silico angiograms were obtained. We then performed voxel‐wise (3D) API on the ground‐truth contrast distribution and compared it to pixel‐wise (2D) API, both with and without pathlength correction for each biplane view. The percentage difference (PD) between the resultant API biomarkers in each dataset were calculated within the aneurysm region of interest (ROI). Results Intensity‐based API parameters, such as the area under the curve (AUC) and peak height (PH), exhibited notable changes in magnitude and spatial distribution following pathlength correction: these now accurately represent conservation of mass of injected contrast media within each arterial geometry and accurately reflect regions of stagnation and recirculation in each aneurysm ROI. Improved agreement was observed between these biomarkers in the pathlength‐corrected biplane maps: the maximum PD within the aneurysm ROI is 3.3% with pathlength correction and 47.7% without pathlength correction. As expected, improved agreement with ROI‐averaged ground‐truth 3D counterparts was observed for all aneurysm geometries, particularly large aneurysms: the maximum PD for both AUC and PH was 5.8%. Temporal parameters (mean transit time, MTT, time‐to‐peak, TTP, time‐to‐arrival, TTA) remained unaffected after pathlength correction. Conclusions This study indicates that the values of intensity‐based API parameters obtained with conventional 2D‐API, without pathlength correction, are highly dependent on the projection orientation, and uncorrected API should be avoided for hemodynamic analysis. The proposed metric can standardize 2D API‐derived biomarkers independent of projection orientation, potentially improving the diagnostic value of all acquired 2D‐DSA's. Integration of a pathlength correction map into the imaging process can allow for improved interpretation of biomarkers in 2D space, which may lead to improved diagnostic accuracy during procedures involving the cerebral vasculature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助不渝采纳,获得10
1秒前
大写的笨发布了新的文献求助20
2秒前
4秒前
4秒前
5秒前
老猫322完成签到,获得积分10
5秒前
5秒前
阿离完成签到,获得积分10
5秒前
6秒前
manan发布了新的文献求助10
9秒前
风中傻姑发布了新的文献求助10
10秒前
10秒前
Ldq发布了新的文献求助10
11秒前
zz发布了新的文献求助10
11秒前
是猪毛啊完成签到,获得积分10
11秒前
11秒前
charry完成签到,获得积分10
12秒前
12秒前
雪白溪流完成签到 ,获得积分10
13秒前
喃喃发布了新的文献求助10
15秒前
苗条冰菱完成签到,获得积分10
16秒前
可爱玫瑰完成签到,获得积分10
17秒前
Yana__Chan完成签到,获得积分10
18秒前
CAI313完成签到,获得积分10
18秒前
Jody完成签到,获得积分10
19秒前
chen完成签到,获得积分10
19秒前
温暖的问候完成签到,获得积分10
19秒前
20秒前
20秒前
彭于晏应助苗条冰菱采纳,获得10
21秒前
21秒前
烟花应助ID8采纳,获得10
22秒前
蛇虫鼠蚁应助风中傻姑采纳,获得10
22秒前
毛哥看文献完成签到 ,获得积分10
24秒前
Maestro_S发布了新的文献求助10
26秒前
JL完成签到,获得积分10
26秒前
26秒前
北斗发布了新的文献求助10
26秒前
风中的逍遥完成签到,获得积分10
27秒前
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812792
求助须知:如何正确求助?哪些是违规求助? 3357323
关于积分的说明 10385979
捐赠科研通 3074520
什么是DOI,文献DOI怎么找? 1688877
邀请新用户注册赠送积分活动 812393
科研通“疑难数据库(出版商)”最低求助积分说明 767066