Prediction of 10-Year Cardiovascular Disease Risk, by Diabetes status and Lipoprotein-a levels; the HellenicSCORE II+

医学 置信区间 内科学 糖尿病 逻辑回归 人口 血压 优势比 体质指数 人口学 内分泌学 环境卫生 社会学
作者
Demosthenes B. Panagiotakos,Christina Chrysohoou,Christos Pitsavos,Konstantinos Tsioufis
出处
期刊:Hellenic Journal of Cardiology [Elsevier BV]
卷期号:79: 3-14 被引量:4
标识
DOI:10.1016/j.hjc.2023.10.001
摘要

The aim of this study was to develop an updated model to predict10-year cardiovascular disease (CVD) risk for Greek adults, i.e., the HellenicSCORE II+, based on smoking, systolic blood pressure (SBP), total and High-Density-Lipoprotein-(HDL) cholesterol levels, and stratified by age group, sex, history of diabetes, and Lipoprotein (Lp)-a levels. Individual CVD risk scores were calculated through logit-function models, using the beta-coefficients derived from SCORE2. The Attica Study data were used for the calibration (3,042 participants, aged 45(14) years; 49.1% men). Discrimination ability of the HellenicSCORE II+ was assessed using C-index (range 0-1), adjusted for competing risks. The mean HellenicSCORE II+ score was 6.3% (95% Confidence Interval (CI) 5.9% to 6.6%) for men and 3.7% (95% CI 3.5% to 4.0%) for women (p<0.001), and were higher compared to the relevant SCORE2; 23.5% of men were classified as low risk, 40.2% as moderate and 36.3% as high risk, whereas the corresponding percentages for women were 56.2%, 18.6% and 25.2%. C-statistic index was 0.88 for women and 0.79 for men, when the HellenicSCORE II+ was applied to the ATTICA Study data, suggesting very good accuracy. Stratified analysis by Lp(a) levels led to a 4% improvement in correct classification among participants with high Lp(a). HellenicSCORE II+ values were higher than SCORE2, confirming that the Greek population is at moderate-to-high CVD risk. Stratification by Lp(a) levels may assist to better identify individuals at high CVD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffl完成签到 ,获得积分10
刚刚
李大柱发布了新的文献求助10
2秒前
2秒前
和谐成协完成签到,获得积分10
3秒前
潇洒的茗茗完成签到 ,获得积分10
3秒前
tyl发布了新的文献求助10
7秒前
fuxiao完成签到 ,获得积分10
7秒前
7秒前
怀瑾握瑜发布了新的文献求助10
9秒前
yang完成签到,获得积分10
10秒前
AyCaramba完成签到,获得积分10
11秒前
顾矜应助小煜哥采纳,获得30
11秒前
briliian完成签到,获得积分10
11秒前
WangSanSan完成签到,获得积分10
13秒前
msd2phd完成签到,获得积分10
14秒前
Rrr完成签到,获得积分10
16秒前
17秒前
yueyue完成签到,获得积分10
18秒前
19秒前
充电宝应助怀瑾握瑜采纳,获得10
19秒前
梅竹完成签到,获得积分10
19秒前
Dobronx03完成签到,获得积分10
19秒前
Rrr发布了新的文献求助10
19秒前
NexusExplorer应助Kate采纳,获得10
20秒前
20秒前
彭于晏应助1_a采纳,获得10
21秒前
余冠华发布了新的文献求助10
22秒前
22秒前
科研通AI5应助tyl采纳,获得10
22秒前
见青山完成签到,获得积分0
23秒前
Tethys发布了新的文献求助10
25秒前
安卉发布了新的文献求助10
27秒前
李大柱完成签到,获得积分10
28秒前
小煜哥发布了新的文献求助30
29秒前
29秒前
大个应助gro_ele采纳,获得10
30秒前
NexusExplorer应助南木采纳,获得10
30秒前
科目三应助余冠华采纳,获得10
32秒前
Antonio完成签到 ,获得积分10
33秒前
Mercy发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783084
求助须知:如何正确求助?哪些是违规求助? 3328426
关于积分的说明 10236375
捐赠科研通 3043530
什么是DOI,文献DOI怎么找? 1670558
邀请新用户注册赠送积分活动 799751
科研通“疑难数据库(出版商)”最低求助积分说明 759119