Computing indefinite integrals by difference equations

数学 递推关系 整数(计算机科学) 订单(交换) 关系(数据库) 积分阶(微积分) 牙石(牙科) 应用数学 域代数上的 纯数学 数学分析 计算机科学 医学 牙科 财务 数据库 经济 程序设计语言
作者
Mehmed Nurkanović,Mirsad Trumić
出处
期刊:The Mathematical Gazette [Cambridge University Press]
卷期号:107 (570): 474-487
标识
DOI:10.1017/mag.2023.99
摘要

In teaching mathematics to first-year undergraduates, and thus in the appropriate calculus textbooks, the task of calculating an integral that satisfies a specific first-order or second-order recurrence relation often appears. These relations are obtained mainly by applying the method of integration by parts. Calculating such integrals is usually tedious, especially for an integer n > 2, time-consuming, and presents the possibility of making a large number of errors when computing involves multiple iterative steps. In [1], it is shown that in two cases (Theorems 2.1. and 2.3), the process of calculating integrals satisfying first-order recurrence relations can be performed quickly using easily memorised closed-form formulas for corresponding primitive functions. The question can rightly be asked whether there is a faster way to calculate other integrals of this type. In this paper, our goal is to give an affirmative answer to such a question, though without convering all situations. Since each recurrence relation is equivalent to a difference equation of the same order, the calculation of integrals mentioned above can be reduced to solving the corresponding difference equations. Since every first-order or second-order linear difference equation is solvable, it follows that for every integral which can be reduced to a first- order or second-order recurrence formula, it is possible to find corresponding primitive functions directly. Sometimes such a procedure is much faster than iterative solving of the integral. Closed-form formulas for the integrals discussed in the following sections are not unknown (see [2]). However, here our goal is to present the idea of computing indefinite integrals using difference equations. We will discuss it in more detail in Section 2. In Section 3, we discuss the application of the results obtained to calculate several improper integrals and the application of some of them in different sciences. An exciting example of such an application is the integral , which in the case n = 1 is used in the kinetic theory of gases, particularly in the Maxwell-Boltzmann distribution of gas molecules by energies (see Remark 4). Also, we compare the formulas obtained by the method of difference equations with the formulas obtained using Wolfram Alpha software (see Remark 5).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秋澄完成签到 ,获得积分10
1秒前
能干的新筠完成签到,获得积分10
3秒前
111完成签到,获得积分10
6秒前
嘚嘚完成签到,获得积分10
7秒前
8秒前
执着千青发布了新的文献求助30
9秒前
bkagyin应助疯狂的花卷采纳,获得10
11秒前
12秒前
传奇3应助measureer采纳,获得10
13秒前
wddd333333完成签到,获得积分10
13秒前
星辰大海应助老八采纳,获得10
13秒前
14秒前
13发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
20秒前
酷丫发布了新的文献求助30
20秒前
du发布了新的文献求助10
22秒前
23秒前
瘦瘦瘦完成签到 ,获得积分10
24秒前
lei发布了新的文献求助10
27秒前
SciGPT应助科研通管家采纳,获得10
29秒前
29秒前
复成完成签到 ,获得积分10
29秒前
feige完成签到 ,获得积分10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得20
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
三年三班三井寿完成签到,获得积分10
31秒前
今后应助风趣的语蕊采纳,获得10
31秒前
小二郎应助du采纳,获得10
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844800
求助须知:如何正确求助?哪些是违规求助? 3387185
关于积分的说明 10547818
捐赠科研通 3107829
什么是DOI,文献DOI怎么找? 1712119
邀请新用户注册赠送积分活动 824250
科研通“疑难数据库(出版商)”最低求助积分说明 774679