PHI-SMFE: spatial multi-scale feature extract neural network based on physical heterogeneous interaction for solving passive scalar advection in a 2-D unsteady flow

计算机科学 离散化 标量(数学) 特征(语言学) 流体力学 比例(比率) 网格 平流 流量(数学) 有限体积法 人工智能 人工神经网络 算法 数学 机械 物理 哲学 语言学 几何学 量子力学 数学分析 热力学
作者
Yuchen Yuan,Ning Song,Jie Nie,Xiaomeng Shi,Jingjian Chen,Qi Wen,Zhiqiang Wei
出处
期刊:Frontiers in Marine Science [Frontiers Media SA]
卷期号:10
标识
DOI:10.3389/fmars.2023.1276869
摘要

Fluid dynamic calculations play a crucial role in understanding marine biochemical dynamic processes, impacting the behavior, interactions, and distribution of biochemical components in aquatic environments. The numerical simulation of fluid dynamics is a challenging task, particularly in real-world scenarios where fluid motion is highly complex. Traditional numerical simulation methods enhance accuracy by increasing the resolution of the computational grid. However, this approach comes with a higher computational demand. Recent advancements have introduced an alternative by leveraging deep learning techniques for fluid dynamic simulations. These methods utilize discretized learned coefficients to achieve high-precision solutions on low-resolution grids, effectively reducing the computational burden while maintaining accuracy. Yet, existing fluid numerical simulation methods based on deep learning are limited by their single-scale analysis of spatially correlated physical fields, which fails to capture the diverse scale characteristics inherent in flow fields governed by complex laws in different physical space. Additionally, these models lack an effective approach to enhance correlation interactions among dynamic fields within the same system. To tackle these challenges, we propose the Spatial Multi-Scale Feature Extract Neural Network based on Physical Heterogeneous Interaction (PHI-SMFE). The PHI module is designed to extract heterogeneity and interaction information from diverse dynamic fields, while the SMFE module focuses on capturing multi-scale features in fluid dynamic fields. We utilize channel-biased convolution to implement a separation strategy, reducing the processing of redundant feature information. Furthermore, the traditional solution module based on the finite volume method is integrated into the network to facilitate the numerical solution of the discretized dynamic field in subsequent time steps. Comparative analysis with the current state-of-the-art model reveals that our proposed method offers a 41% increase in simulation accuracy and a 12.7% decrease in inference time during the iterative evolution of unsteady flow. These results underscore the superior performance of our model in terms of both simulation accuracy and computational speedup, establishing it as a state-of-the-art solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独星月发布了新的文献求助10
刚刚
刚刚
含糊的小松鼠完成签到,获得积分10
刚刚
1秒前
1秒前
Ava应助大方的航空采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
刘小白完成签到,获得积分10
1秒前
hhgw完成签到 ,获得积分10
1秒前
1秒前
2秒前
满意的聋五完成签到,获得积分10
2秒前
Liuu完成签到,获得积分10
2秒前
yangyu完成签到,获得积分10
2秒前
李健的粉丝团团长应助FFF采纳,获得10
2秒前
Rose完成签到 ,获得积分10
3秒前
4秒前
小正发布了新的文献求助10
4秒前
Qinqinasm完成签到,获得积分10
4秒前
orixero应助开心幻巧采纳,获得10
4秒前
美丽的如彤完成签到,获得积分10
5秒前
情怀应助自觉的溪灵采纳,获得10
5秒前
hui完成签到,获得积分10
5秒前
水水发布了新的文献求助10
5秒前
5秒前
汉堡包应助lj采纳,获得10
6秒前
gong9456发布了新的文献求助10
6秒前
7秒前
9秒前
CipherSage应助要减肥明雪采纳,获得10
9秒前
11秒前
guangyu发布了新的文献求助10
11秒前
yxl关闭了yxl文献求助
12秒前
旺仔小高完成签到,获得积分20
12秒前
gulu发布了新的文献求助10
13秒前
14秒前
Betty完成签到,获得积分10
14秒前
桃李完成签到 ,获得积分10
14秒前
此生长安完成签到,获得积分20
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600913
求助须知:如何正确求助?哪些是违规求助? 4686477
关于积分的说明 14844184
捐赠科研通 4678943
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252