A novel approach for industrial concrete defect identification based on image processing and deep convolutional neural networks

卷积神经网络 稳健性(进化) 计算机科学 人工智能 深度学习 开裂 人工神经网络 可靠性(半导体) 耐久性 机器学习 模式识别(心理学) 材料科学 聚合物 化学 功率(物理) 复合材料 物理 基因 数据库 量子力学 生物化学
作者
Ashish Gaur,Kamal Kishore,Rajul Jain,Aaysha Pandey,Prakash Singh,Naresh Kumar Wagri,Abhirup B. Roy-Chowdhury
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:19: e02392-e02392 被引量:17
标识
DOI:10.1016/j.cscm.2023.e02392
摘要

The preservation of structural integrity and durability is essential for the long-term viability of civil infrastructure projects. Addressing concrete defects promptly is crucial to achieving this objective. In this research, the research proposes a novel method for concrete defect analysis, harnessing the potential of image processing and deep learning techniques. It employs a fusion-based deep convolutional neural network (CNN), amalgamating the features of Inception V3, VGG16, and AlexNet architectures to identify and classify six distinct concrete defect characteristics, namely Cracks, Crazing, Efflorescence, Pop-out, Scaling, and Surface Cracks. Through rigorous training and validation, we thoroughly assess the performance of the proposed fusion-based CNN model. The testing phase reveals precision rates, with Crazing showing the lowest precision at 95%, and Cracks/Pop-outs achieving 98%, while other defect classifications exhibit exceptional 100% precision rates. The overall efficacy of our proposed model is evaluated using accuracy and F1-score metrics. Our findings demonstrate an impressive overall accuracy of 98.31% and an F1-score of 0.98, affirming the robustness and reliability of our approach. The outcomes of this study signify a significant advancement toward accurate and automated detection and classification of concrete defects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
哈哈哈完成签到 ,获得积分10
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
Momomo应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Momomo应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
wssf756应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Momomo应助科研通管家采纳,获得10
2秒前
默问应助科研通管家采纳,获得30
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
BareBear应助科研通管家采纳,获得10
2秒前
Momomo应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
Cheng_Wei发布了新的文献求助10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
BareBear应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
BareBear应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Momomo应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
BareBear应助科研通管家采纳,获得10
3秒前
TIAOTIAO发布了新的文献求助10
3秒前
6秒前
NULL完成签到,获得积分10
6秒前
123123123发布了新的文献求助10
7秒前
8秒前
唠叨的绿竹关注了科研通微信公众号
8秒前
Qin发布了新的文献求助100
10秒前
思源应助浮名半生采纳,获得10
11秒前
12秒前
天天快乐应助LL采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495208
求助须知:如何正确求助?哪些是违规求助? 4592899
关于积分的说明 14439172
捐赠科研通 4525764
什么是DOI,文献DOI怎么找? 2479666
邀请新用户注册赠送积分活动 1464489
关于科研通互助平台的介绍 1437348