SP-Det: Leveraging Saliency Prediction for Voxel-Based 3D Object Detection in Sparse Point Cloud

计算机科学 人工智能 体素 点云 计算机视觉 目标检测 模式识别(心理学) 云计算 对象(语法) 点(几何) 数学 几何学 操作系统
作者
Pei An,Yucong Duan,Yuliang Huang,Jie Ma,Yanfei Chen,Liheng Wang,You Yang,Qiong Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2795-2808 被引量:8
标识
DOI:10.1109/tmm.2023.3304054
摘要

Voxel is one of the common structural representation of 3D point cloud. Due to the sparsity of point cloud generated by light detection and ranging (LiDAR), there is the extreme imbalance in the foreground and background voxels. It decreases the accuracy of 3D object detection, has the negative effect on intelligent driving safety. To overcome this problem, we present a saliency prediction based 3D object detector SP-Det in this article. Although foreground voxels have the sufficient feature of object, it is difficult to localize the foreground region from voxel space with the larger background region. We design an auxiliary learning task, saliency prediction (SP). It benefits 3D detector in identifying the foreground region. SP task uses label diffusion to alleviate the label imbalance. It reduces the learning difficulty of saliency in voxel and bird's eye view (BEV) spaces. After that, to strengthen feature interaction from the sparse foreground region, we design saliency fusion (SF) module to fuse the learning result in SP task. It utilizes voxel and BEV saliency maps as progressive attention to resist the redundant feature from background region. To aggregate more foreground feature inside 3D and BEV region of interest (RoI), we design hybrid grid maps based RoI pooling (Hybrid-RoI pooling). Experiments are conducted in STF dataset. The adverse weather enlarges the sparsity of LiDAR point cloud, increasing the difficulty of object detection. SP-Det identifies and leverages foreground region, and achieves the performance better than the current methods. Hence, we believe that SP-Det benefits to LiDAR based 3D scene understanding in the adverse weather.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
传奇3应助尹忆梅采纳,获得10
2秒前
慈祥的柚子完成签到,获得积分20
3秒前
4秒前
圆圆完成签到,获得积分10
5秒前
皮卡皮卡丘完成签到,获得积分10
5秒前
5秒前
慕青应助波子采纳,获得10
7秒前
7秒前
鱼鱼发布了新的文献求助10
9秒前
cm完成签到,获得积分10
10秒前
迷路曼雁完成签到,获得积分10
10秒前
碎尘发布了新的文献求助10
10秒前
圆圆发布了新的文献求助10
10秒前
潇洒的如松完成签到,获得积分10
10秒前
sword完成签到,获得积分10
11秒前
meng发布了新的文献求助10
12秒前
Jasonzhang完成签到,获得积分10
12秒前
优美小蝴蝶关注了科研通微信公众号
12秒前
糯糯发布了新的文献求助10
13秒前
14秒前
长生发布了新的文献求助10
16秒前
英俊的铭应助33采纳,获得10
16秒前
17秒前
17秒前
Promise发布了新的文献求助10
18秒前
李家静完成签到 ,获得积分10
18秒前
彭于晏应助成就的盼柳采纳,获得30
18秒前
20秒前
宅了五百奶奶完成签到,获得积分10
20秒前
饱满的复天完成签到 ,获得积分10
21秒前
斯文的小旋风应助yubo采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
22秒前
所所应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
冰魂应助科研通管家采纳,获得20
22秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A warm-up performed with proper-weight sandbags on the leg improves the speed and RPE performance of 100 m sprint in collegiate male sprinters 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826906
求助须知:如何正确求助?哪些是违规求助? 3369208
关于积分的说明 10454633
捐赠科研通 3088768
什么是DOI,文献DOI怎么找? 1699396
邀请新用户注册赠送积分活动 817289
科研通“疑难数据库(出版商)”最低求助积分说明 770158