Contrastive Transformer Learning With Proximity Data Generation for Text-Based Person Search

计算机科学 人工智能 变压器 任务(项目管理) 桥接(联网) 机器学习 模式识别(心理学) 自然语言处理 计算机网络 物理 管理 量子力学 电压 经济
作者
Hefeng Wu,Weifeng Chen,Zhibin Liu,Tianshui Chen,Zhiguang Chen,Liang Lin
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7005-7016 被引量:9
标识
DOI:10.1109/tcsvt.2023.3329220
摘要

Given a descriptive text query, text-based person search (TBPS) aims to retrieve the best matched target person from an image gallery. Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data. To better align the two modalities, most existing works focus on introducing sophisticated network structures and auxiliary tasks, which are complex and hard to implement. In this paper, we propose a simple yet effective dual Transformer model for text-based person search. By exploiting a hardness-aware contrastive learning strategy, our model achieves state-of-the-art performance without any special design for local feature alignment or side information. Moreover, we propose a proximity data generation (PDG) module to automatically produce more diverse data for cross-modal training. The PDG module first introduces an automatic generation algorithm based on a text-to-image diffusion model, which generates new text-image pair samples in the proximity space of original ones. Then it combines approximate text generation and feature-level mixup during training to further strengthen the data diversity. The PDG module can largely guarantee the reasonability of the generated samples that are directly used for training without any human inspection for noise rejection. It improves the performance of our model significantly, providing a feasible solution to the data insufficiency problem faced by such fine-grained visual-linguistic tasks. Extensive experiments on two popular datasets of the TBPS task (i.e., CUHK-PEDES and ICFG-PEDES) show that the proposed approach outperforms state-of-the-art approaches evidently, e.g., improving by 3.88%, 4.02%, 2.92% in terms of Top1, Top5, Top10 on CUHK-PEDES.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liang发布了新的文献求助10
1秒前
kay发布了新的文献求助10
1秒前
4秒前
大个应助Kong采纳,获得10
7秒前
ZCM完成签到,获得积分10
8秒前
王小少发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
稳重沛白完成签到 ,获得积分10
12秒前
13秒前
starlx0813发布了新的文献求助10
14秒前
优雅的弼发布了新的文献求助10
17秒前
00完成签到,获得积分10
18秒前
orixero应助高兴的易形采纳,获得10
19秒前
20秒前
20秒前
glj应助夏青荷采纳,获得10
22秒前
22秒前
纯情女大完成签到 ,获得积分10
23秒前
缘缘发布了新的文献求助10
24秒前
hyominhsu完成签到,获得积分10
24秒前
研友_ZlqeD8完成签到,获得积分10
25秒前
26秒前
望除举报冰与火求助涉嫌违规
26秒前
顾矜应助yangmiemie采纳,获得10
27秒前
华仔应助starlx0813采纳,获得10
27秒前
ukonic完成签到,获得积分10
28秒前
小二郎应助dudu采纳,获得10
28秒前
Dream完成签到,获得积分10
30秒前
31秒前
32秒前
35秒前
36秒前
36秒前
xzy998应助ukonic采纳,获得30
36秒前
华仔应助魏123456采纳,获得10
38秒前
活泼学生完成签到 ,获得积分10
38秒前
稳重沛白发布了新的文献求助10
38秒前
科研通AI5应助夜话风陵杜采纳,获得10
41秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348202
关于积分的说明 10337121
捐赠科研通 3064142
什么是DOI,文献DOI怎么找? 1682405
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 763997