Mesoporous Nano-Badminton with Asymmetric Mass Distribution: How Nanoscale Architecture Affects the Blood Flow Dynamics

纳米颗粒 纳米技术 化学 杰纳斯 纳米材料 纳米载体 介孔材料 纳米医学 动力学(音乐) 材料科学 物理 声学 生物化学 催化作用
作者
Tiancong Zhao,Runfeng Lin,Borui Xu,Minchao Liu,Liang Chen,Fan Zhang,Yongfeng Mei,Xiaomin Li,Dongyuan Zhao
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (39): 21454-21464 被引量:24
标识
DOI:10.1021/jacs.3c07097
摘要

While the nanobio interaction is crucial in determining nanoparticles' in vivo fate, a previous work on investigating nanoparticles' interaction with biological barriers is mainly carried out in a static state. Nanoparticles' fluid dynamics that share non-negligible impacts on their frequency of encountering biological hosts, however, is seldom given attention. Herein, inspired by badmintons' unique aerodynamics, badminton architecture Fe3O4&mPDA (Fe3O4 = magnetite nanoparticle and mPDA = mesoporous polydopamine) Janus nanoparticles have successfully been synthesized based on a steric-induced anisotropic assembly strategy. Due to the "head" Fe3O4 having much larger density than the mPDA "cone", it shows an asymmetric mass distribution, analogous to real badminton. Computational simulations show that nanobadmintons have a stable fluid posture of mPDA cone facing forward, which is opposite to that for the real badminton. The force analysis demonstrates that the badminton-like morphology and mass distribution endow the nanoparticles with a balanced motion around this posture, making its movement in fluid stable. Compared to conventional spherical Fe3O4@mPDA nanoparticles, the Janus nanoparticles with an asymmetric mass distribution have straighter blood flow trails and ∼50% reduced blood vessel wall encountering frequency, thus providing doubled blood half-life and ∼15% lower organ uptakes. This work provides novel methodology for the fabrication of unique nanomaterials, and the correlations between nanoparticle architectures, biofluid dynamics, organ uptake, and blood circulation time are successfully established, providing essential guidance for designing future nanocarriers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Potato123123完成签到 ,获得积分10
1秒前
2秒前
小烦同学完成签到,获得积分10
2秒前
SciGPT应助Li采纳,获得10
2秒前
湘文发布了新的文献求助10
2秒前
隐形曼青应助Pumpkin采纳,获得10
3秒前
123456发布了新的文献求助10
3秒前
陈嘉良发布了新的文献求助100
3秒前
慕青应助mym采纳,获得10
3秒前
ding应助lolos采纳,获得10
3秒前
liuyi2001发布了新的文献求助10
3秒前
4秒前
俞藏今发布了新的文献求助10
4秒前
Funcheer发布了新的文献求助10
5秒前
CipherSage应助重重采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
zzz完成签到,获得积分10
7秒前
7秒前
7秒前
Tiramisu628完成签到,获得积分20
7秒前
7秒前
雍井发布了新的文献求助10
8秒前
大飞完成签到 ,获得积分10
8秒前
8秒前
石榴脆莆发布了新的文献求助10
10秒前
10秒前
自然的初南完成签到,获得积分10
10秒前
七七完成签到,获得积分20
10秒前
10秒前
lucky发布了新的文献求助20
11秒前
11秒前
徐嘉女发布了新的文献求助30
11秒前
12秒前
隐形曼青应助Khr1stINK采纳,获得10
12秒前
酷酷珠发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5485990
求助须知:如何正确求助?哪些是违规求助? 4585645
关于积分的说明 14405938
捐赠科研通 4516086
什么是DOI,文献DOI怎么找? 2474631
邀请新用户注册赠送积分活动 1460519
关于科研通互助平台的介绍 1433722