High-precision bladder cancer diagnosis method: 2D Raman spectrum figures based on maintenance technology combined with automatic weighted feature fusion network

模式识别(心理学) 光谱图 人工智能 拉曼光谱 特征(语言学) 计算机科学 特征提取 光学 物理 语言学 哲学
作者
Mengge Yang,Jiajia Wang,Siyu Quan,Qiqi Xu
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1282: 341908-341908 被引量:9
标识
DOI:10.1016/j.aca.2023.341908
摘要

Raman spectroscopy has been extensively utilized as a marker-free detection method in the complementary diagnosis of cancer. Multivariate statistical classification analysis is frequently employed for Raman spectral data classification. Nevertheless, traditional multivariate statistical classification analysis performs poorly when analyzing large samples and multicategory spectral data. In addition, with the advancement of computer vision, convolutional neural networks (CNNs) have demonstrated extraordinarily precise analysis of two-dimensional image processing.Combining 2D Raman spectrograms with automatic weighted feature fusion network (AWFFN) for bladder cancer detection is presented in this paper. Initially, the s-transform (ST) is implemented for the first time to convert 1D Raman data into 2D spectrograms, achieving 99.2% detection accuracy. Second, four upscaling techniques, including short time fourier transform (STFT), recurrence map (RP), markov transform field (MTF), and grammy angle field (GAF), were used to transform the 1D Raman spectral data into a variety of 2D Raman spectrograms. In addition, a particle swarm optimization (PSO) algorithm is combined with VGG19, ResNet50, and ResNet101 to construct a weighted feature fusion network, and this parallel network is employed for evaluating multiple spectrograms. Class activation mapping (CAM) is additionally employed to illustrate and evaluate the process of feature extraction via the three parallel network branches. The results demonstrate that the combination of a 2D Raman spectrogram along with a CNN for the diagnosis of bladder cancer obtains a 99.2% accuracy rate,which indicates that it is an extremely promising auxiliary technology for cancer diagnosis.The proposed two-dimensional Raman spectroscopy method has an improved precision than one-dimensional spectroscopic data, which presents a potential methodology for assisted cancer detection and providing crucial technical support for assisted diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
忘忧发布了新的文献求助10
1秒前
pbj发布了新的文献求助10
1秒前
上官若男应助Likx采纳,获得10
1秒前
1秒前
2秒前
愉快的楷瑞完成签到,获得积分10
2秒前
独特的尔风完成签到,获得积分10
2秒前
ppsy完成签到,获得积分20
3秒前
3秒前
YTY完成签到,获得积分10
4秒前
山与发布了新的文献求助10
4秒前
伶俐惋清发布了新的文献求助10
4秒前
ufofly730完成签到 ,获得积分10
5秒前
完美世界应助athenalin1988采纳,获得10
5秒前
香蕉觅云应助王钢铁采纳,获得10
5秒前
5秒前
复杂的宝马完成签到,获得积分10
6秒前
忘忧完成签到,获得积分10
6秒前
绿兔子发布了新的文献求助10
6秒前
传奇3应助pbj采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
整整完成签到,获得积分10
8秒前
周周发布了新的文献求助10
8秒前
orixero应助lydiaabc采纳,获得10
9秒前
10秒前
傲娇以晴完成签到 ,获得积分10
10秒前
解语花发布了新的文献求助30
10秒前
刘荣圣发布了新的文献求助10
11秒前
Bowen完成签到,获得积分10
11秒前
hy完成签到 ,获得积分10
11秒前
大爱仙尊完成签到,获得积分10
11秒前
毛77发布了新的文献求助30
12秒前
嘉仔发布了新的文献求助10
13秒前
13秒前
慕青应助Dyle采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071167
求助须知:如何正确求助?哪些是违规求助? 4292013
关于积分的说明 13372748
捐赠科研通 4112513
什么是DOI,文献DOI怎么找? 2252022
邀请新用户注册赠送积分活动 1257123
关于科研通互助平台的介绍 1189843