GPT-aided diagnosis on agricultural image based on a new light YOLOPC

计算机科学 人工智能 农业 比例(比率) 领域(数学) 机器学习 图像(数学) 数据科学 地图学 地理 数学 考古 纯数学
作者
Jiajun Qing,Xiaoling Deng,Yubin Lan,Zhikai Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108168-108168 被引量:18
标识
DOI:10.1016/j.compag.2023.108168
摘要

Large Language Models (LLM) have been extensively studied for their ability to engage in textual dialogue and have shown promising results in various fields. However, the agricultural industry has yet to fully integrate LLM into its practice due to the dominance of visual images in agricultural data that cannot be effectively processed by LLM designed for text. Additionally, traditional image classification networks have limitations in understanding crop etiology and disease, hindering accurate diagnosis. Furthermore, the mixture of diseases can also interfere with the network's prediction. Therefore, accurately analyzing pests and diseases in agricultural scenarios and providing diagnostic reports remains a challenge. To address this issue, a novel approach that combines the deep logical reasoning capabilities of GPT-4 with the visual understanding capabilities of the YOLO (You Only Look Once) network was proposed in this study. Additionally, a new lightweight variant of YOLO, called YOLOPC, and a novel image-to-text mapping method for adapting YOLO and GPT were introduced. The experimental results demonstrate that YOLOPC, with approximately 75% fewer parameters than YOLOv5-nano, achieves a 94.5% accuracy rate. The GPT induction and reasoning module demonstrates 90% reasoning accuracy in generating agricultural diagnostic reports with text assistance. In the future, it is likely that a higher-performance GPT model will be released. The combination of GPT with agricultural scenarios will become the cornerstone of large-scale agricultural diagnostic models. The proposed method will benefit the development of large-scale models in the agricultural field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sq_gong发布了新的文献求助10
刚刚
萧lkk完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
back you up应助科研通管家采纳,获得30
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
5秒前
Jasper应助鲤鱼储采纳,获得20
5秒前
7秒前
chaowei完成签到,获得积分10
8秒前
8秒前
江峰发布了新的文献求助10
8秒前
9秒前
xxx发布了新的文献求助10
10秒前
姜博超发布了新的文献求助10
11秒前
周小鱼发布了新的文献求助10
11秒前
Twilight完成签到,获得积分10
12秒前
Sun应助潇洒的涵双采纳,获得10
12秒前
linmu完成签到 ,获得积分10
12秒前
13秒前
靓丽的发箍完成签到,获得积分10
13秒前
江峰完成签到,获得积分10
15秒前
17秒前
18秒前
Nancy发布了新的文献求助10
18秒前
唐瑚芦完成签到 ,获得积分10
19秒前
Genius完成签到,获得积分10
19秒前
future完成签到 ,获得积分10
21秒前
喊我彩彩发布了新的文献求助30
21秒前
仿生人发布了新的文献求助10
21秒前
yahonyoyoyo发布了新的文献求助10
22秒前
青山落日秋月春风完成签到,获得积分10
23秒前
23秒前
庸尘完成签到,获得积分10
24秒前
dnbe完成签到 ,获得积分10
24秒前
看看完成签到,获得积分20
25秒前
姜博超完成签到,获得积分10
25秒前
嘤嘤怪应助001采纳,获得20
28秒前
wyx完成签到 ,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796439
求助须知:如何正确求助?哪些是违规求助? 3341670
关于积分的说明 10307098
捐赠科研通 3058243
什么是DOI,文献DOI怎么找? 1678070
邀请新用户注册赠送积分活动 805843
科研通“疑难数据库(出版商)”最低求助积分说明 762815