Reconstruction of the Thermal Source from the Temperature Measured Case of Surface Heat Treatment of Steel by Laser Beam

共轭梯度法 热导率 热传导 工作(物理) 材料科学 传热 反问题 趋同(经济学) 温度梯度 热的 曲面(拓扑) 反向 机械工程 机械 激光器 激光束质量 计算机科学 热力学 复合材料 光学 算法 数学 数学分析 物理 激光束 工程类 几何学 气象学 经济 经济增长
作者
Mohamed Maniana,Azzedine Azim,Fouad Errchiqui,Abdelali Tajmouati
出处
期刊:International Journal of Heat and Technology [International Information and Engineering Technology Association]
卷期号:40 (6): 1507-1513 被引量:2
标识
DOI:10.18280/ijht.400620
摘要

The problem posed in the surface heat treatment industry of metallic materials is the knowledge of the amount of energy required and its correct distribution on the treated surface for the achievement of a better quality of the metallurgical structure of treated parts. To succeed in this operation, manufacturers are required to carry out many expensive and time-consuming experiments. This work consists in predicting the energy density applied to the surface of a metal part, during surface heat treatment by a laser beam, based solely on temperature measurements taken under the treated surface. This problem in the mathematical sense is called the reverse heat transfer problem. The solution of this inverse problem of heat conduction allows us to predict the density of the energy necessary to be applied to the surface from the desired metallurgic structure characterized by a well-defined temperature distribution. The optimization method used in this work is that of the conjugate gradient thanks to its speed of convergence, its quality of precision and also to stability. Many similar works have been developed in the literature using the inverse method but only to estimate thermo-physical characteristics such as thermal conductivity, thermal capacity mass, point heat source, etc. using conventional numerical methods. But in no case to estimate the complex profile of an energy density applied to the real processing of steel using the conjugate gradient algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FyD发布了新的文献求助10
2秒前
3秒前
yan发布了新的文献求助10
3秒前
可爱的函函应助hml123采纳,获得10
3秒前
深情安青应助风中小刺猬采纳,获得10
4秒前
书记发布了新的文献求助10
5秒前
sswbzh给Summer的求助进行了留言
5秒前
别云间发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
小冉不熬夜完成签到 ,获得积分10
6秒前
7秒前
沉静的成危完成签到,获得积分10
8秒前
smz发布了新的文献求助10
8秒前
9秒前
9秒前
科研女工完成签到,获得积分10
10秒前
端庄的夏寒完成签到,获得积分10
10秒前
10秒前
lize5493发布了新的文献求助10
11秒前
orixero应助wuhuiFAFU采纳,获得10
11秒前
hml123发布了新的文献求助10
11秒前
求助人员应助尊敬的丹烟采纳,获得30
11秒前
NexusExplorer应助书记采纳,获得10
12秒前
12秒前
何必在乎发布了新的文献求助10
12秒前
13秒前
善学以致用应助柒_l采纳,获得20
13秒前
ding应助豆丁采纳,获得10
13秒前
14秒前
orixero应助tph采纳,获得30
15秒前
clove发布了新的文献求助10
15秒前
Akim应助xxdn采纳,获得10
15秒前
懦弱的南蕾完成签到,获得积分10
16秒前
17秒前
18秒前
Qiuju完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685773
求助须知:如何正确求助?哪些是违规求助? 5046098
关于积分的说明 15188499
捐赠科研通 4844920
什么是DOI,文献DOI怎么找? 2597694
邀请新用户注册赠送积分活动 1550121
关于科研通互助平台的介绍 1508488