计算机科学
标杆管理
基本事实
注释
聚类分析
吞吐量
计算生物学
转录组
分割
数据挖掘
生物信息学
人工智能
生物
基因
业务
基因表达
电信
营销
无线
生物化学
作者
Pengfei Ren,Rui Zhang,Yunfeng Wang,Peng Zhang,Ce Luo,Suyan Wang,Xiaohong Li,Zongxu Zhang,Yanping Zhao,Yufeng He,Haorui Zhang,Yufeng Li,Zhidong Gao,Xiuping Zhang,Yahui Zhao,Zhihua Liu,Yuanguang Meng,Zheng Zhang,Zexian Zeng
标识
DOI:10.1038/s41467-025-64292-3
摘要
Abstract Recent advancements in spatial transcriptomics technologies have significantly enhanced resolution and throughput, underscoring an urgent need for systematic benchmarking. Here, we generate serial tissue sections from colon adenocarcinoma, hepatocellular carcinoma, and ovarian cancer samples for systematic evaluation. Using these uniformly processed samples, we generate spatial transcriptomics data across four high-throughput platforms with subcellular resolution: Stereo-seq v1.3, Visium HD FFPE, CosMx 6K, and Xenium 5K. To establish ground truth datasets, we profile proteins on tissue sections adjacent to all platforms using CODEX and perform single-cell RNA sequencing on the same samples. Leveraging manual nuclear segmentation and detailed annotations, we systematically assess each platform’s performance across capture sensitivity, specificity, diffusion control, cell segmentation, cell annotation, spatial clustering, and concordance with adjacent CODEX. The uniformly generated and processed multi-omics dataset could advance computational method development and biological discoveries. The dataset is accessible via SPATCH, a user-friendly web server for visualization and download.
科研通智能强力驱动
Strongly Powered by AbleSci AI