Generative Artificial Intelligence in Bioinformatics: A Systematic Review of Models, Applications, and Methodological Advances

作者
Riasad Alvi,Sarah Zaman,Wasimul Karim,Arefin Ittesafun Abian,Mohaimenul Azam Khan Raiaan,Saddam Hossain Mukta,Md Rafi Ur Rashid,Rafiqul Islam,Yakub Sebastian,Sami Azam
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2511.03354
摘要

Generative artificial intelligence (GenAI) has become a transformative approach in bioinformatics that often enables advancements in genomics, proteomics, transcriptomics, structural biology, and drug discovery. To systematically identify and evaluate these growing developments, this review proposed six research questions (RQs), according to the preferred reporting items for systematic reviews and meta-analysis methods. The objective is to evaluate impactful GenAI strategies in methodological advancement, predictive performance, and specialization, and to identify promising approaches for advanced modeling, data-intensive discovery, and integrative biological analysis. RQ1 highlights diverse applications across multiple bioinformatics subfields (sequence analysis, molecular design, and integrative data modeling), which demonstrate superior performance over traditional methods through pattern recognition and output generation. RQ2 reveals that adapted specialized model architectures outperformed general-purpose models, an advantage attributed to targeted pretraining and context-aware strategies. RQ3 identifies significant benefits in the bioinformatics domains, focusing on molecular analysis and data integration, which improves accuracy and reduces errors in complex analysis. RQ4 indicates improvements in structural modeling, functional prediction, and synthetic data generation, validated by established benchmarks. RQ5 suggests the main constraints, such as the lack of scalability and biases in data that impact generalizability, and proposes future directions focused on robust evaluation and biologically grounded modeling. RQ6 examines that molecular datasets (such as UniProtKB and ProteinNet12), cellular datasets (such as CELLxGENE and GTEx) and textual resources (such as PubMedQA and OMIM) broadly support the training and generalization of GenAI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鲨鱼辣椒完成签到 ,获得积分20
1秒前
1秒前
徐彬武完成签到,获得积分10
2秒前
4秒前
嘉嘉嘉嘉嘉完成签到,获得积分10
4秒前
杏林完成签到,获得积分10
5秒前
沉默笑寒完成签到,获得积分10
6秒前
6秒前
研友_Z7gKEZ完成签到,获得积分10
6秒前
松子发布了新的文献求助10
7秒前
秋石完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
赟yun完成签到,获得积分0
8秒前
8秒前
9秒前
领导范儿应助大力的一斩采纳,获得10
9秒前
Aspire完成签到 ,获得积分10
9秒前
Hello应助znnn采纳,获得10
9秒前
小溪苏完成签到 ,获得积分10
9秒前
111111发布了新的文献求助10
10秒前
哈哈发布了新的文献求助10
10秒前
Petrichor完成签到,获得积分10
10秒前
迷人梦旋发布了新的文献求助10
10秒前
机灵寒烟完成签到,获得积分10
11秒前
刘芮彤发布了新的文献求助10
12秒前
13秒前
归尘发布了新的文献求助50
13秒前
14秒前
14秒前
14秒前
15秒前
15秒前
程程完成签到,获得积分10
16秒前
9577完成签到 ,获得积分10
16秒前
美丽蕨菜子完成签到,获得积分10
16秒前
ponowang完成签到,获得积分10
17秒前
bkagyin应助Green采纳,获得10
17秒前
Hello应助南城雨落采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601020
求助须知:如何正确求助?哪些是违规求助? 4686584
关于积分的说明 14845029
捐赠科研通 4679502
什么是DOI,文献DOI怎么找? 2539154
邀请新用户注册赠送积分活动 1506042
关于科研通互助平台的介绍 1471253