Mechanism elaboration on the thermal decomposition of ether electrolyte in sodium-ion battery

材料科学 电解质 热分解 电池(电) 阿累尼乌斯方程 阳极 分解 化学工程 无机化学 活化能 有机化学 物理化学 化学 电极 热力学 物理 工程类 功率(物理)
作者
Yuelei Pan,Lunlun Gong,Yangyang Fu,Long Shi,Chengyuan Liu,Yang Pan,Jiuzhong Yang,Heping Zhang,Xudong Cheng
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:52: 238-249 被引量:3
标识
DOI:10.1016/j.ensm.2022.08.009
摘要

The thermodynamic parameters and thermal decomposition characteristics of the ether electrolyte are important to the performance and safety of sodium-ion batteries. This study offered an underlying understanding in detecting, quantifying and revealing the thermal decomposition mechanism of DEGDME ether electrolyte, especially under the effects of transition metal chalcogenides (TMCs) anode CoS2/C. Firstly, a customized high-pressure reactor was used to address the influences of sodium salt on the exothermic temperature and pressure changes during the thermal decomposition of the ether electrolytes. Secondly, the thermodynamic characteristics of the ether electrolyte under the effects of anode were quantitatively analyzed based on the Arrhenius law. Thirdly, the step-by-step reaction mechanism for the thermal decomposition of the ether electrolyte was explored by an in-situ synchrotron radiation vacuum extreme ultraviolet photoionization mass spectrometry technology, supplemented by DFT simulation calculation. Several interesting phenomena and original mechanisms were discovered, showing that the TMCs anode CoS2/C could reduce the decomposition activation energy of the DEGDME (i.e., the maximum decrease is 10.2 kJ mol−1) and catalytically accelerate the thermal decomposition reaction (i.e., the heating rate was increased by 29.8 times). At the same time, a small amount of O2 produced when the temperature reached 242.5°C, rising the risk of the sodium-ion battery. The research outcomes of this study can provide a guidance to the safety evaluation and optimization of the electrolytes in commercial sodium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助踏实寒梅采纳,获得10
刚刚
gerry发布了新的文献求助10
2秒前
坦率晓霜发布了新的文献求助20
3秒前
3秒前
生医工小学生应助彭鑫采纳,获得50
3秒前
迷人路灯发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
kousaidzx完成签到,获得积分10
4秒前
yu完成签到,获得积分10
4秒前
酷波er应助柯岩任采纳,获得10
4秒前
4秒前
lbl完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
clown发布了新的文献求助10
6秒前
无忧无虑完成签到 ,获得积分10
6秒前
david完成签到 ,获得积分10
6秒前
逃跑的炸鸡完成签到 ,获得积分10
7秒前
hey发布了新的文献求助10
7秒前
7秒前
7秒前
一川发布了新的文献求助10
7秒前
yu发布了新的文献求助10
8秒前
琴生发布了新的文献求助10
9秒前
韶雁开完成签到,获得积分10
9秒前
QDD完成签到,获得积分20
10秒前
不安雁菱发布了新的文献求助10
10秒前
林中漫发布了新的文献求助10
10秒前
10秒前
华听白发布了新的文献求助10
11秒前
迷雾完成签到,获得积分10
11秒前
科研通AI5应助坦率易烟采纳,获得10
11秒前
11秒前
12秒前
大模型应助深情海安采纳,获得10
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835479
求助须知:如何正确求助?哪些是违规求助? 3377803
关于积分的说明 10500774
捐赠科研通 3097386
什么是DOI,文献DOI怎么找? 1705784
邀请新用户注册赠送积分活动 820705
科研通“疑难数据库(出版商)”最低求助积分说明 772219