A method for calculating and simulating phenotype of soybean based on 3D reconstruction

分割 天蓬 相关系数 生物系统 数学 计算机科学 人工智能 生物 植物 统计
作者
Xiaodan Ma,Bingxue Wei,Haiou Guan,Yingying Cheng,Zuyu Zhuo
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:154: 127070-127070 被引量:15
标识
DOI:10.1016/j.eja.2023.127070
摘要

In plant phenotypic research, accurate organ segmentation and crop simulation are crucial for optimizing crop planting and increasing yield. In this study, an efficient method for soybean organ segmentation and phenotypic growth simulation was explored based on 3D reconstruction technology. Taking Dongnong252 soybean as the research object, the soybean phenotype acquisition system based on Kinect sensor was used to achieve high-precision and non-destructive acquisition of soybean canopy images during the whole growth period. First, conditional filtering and statistical filtering were used to remove noise. Then, combined with the Intrinsic Shape Signatures-Coherent Point Drift (ISS-CPD) and the Iterative Closest Point (ICP) algorithms, the multi-view three-dimensional (3D) canopy structure of soybean was reconstructed, which provided a reliable basis for plant stem and leaf segmentation. On this basis, the average accuracy of plant stem and leaf segmentation was 79.99% by using the Distance-field-based segmentation pipeline (DFSP) algorithm. Furthermore, the accurate information was provided for extracting and calculating 3D phenotypic parameters such as plant height, crown width, stem thickness, leaf length and leaf width from three scales of whole plant, stem and leaf. The calculated values were highly consistent with the measured values, with an average coefficient of determination of 0.9654 and an average percentage error of 3.4862%. Meanwhile, by analyzing the quantitative relationship between phenotypic parameters and physiological development time, the data-driven Richards growth simulation model was introduced to accurately predict the growth process of soybean plants. The coefficient of determination R2 values of each phenotypic simulation model reached above 0.9357, which improved the goodness of fit of the model by 0.03 compared with the Logistic model, and its root mean square error (RMSE) ranged from 0.0020 to 0.1112. The research results indicated that this method had high accuracy and reliability in 3D reconstruction of soybean canopy, phenotype calculation, and growth simulation. It could provide quantitative indicators for soybean variety selection, planting, and management, and provide technical support and reference for high-throughput phenotype acquisition and analysis of field crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助小Q啊啾采纳,获得10
刚刚
猪爸爸发布了新的文献求助10
1秒前
濠哥妈咪发布了新的文献求助10
2秒前
非而者厚应助LaTeXer采纳,获得10
2秒前
尤水绿应助TqcPisces采纳,获得20
3秒前
3秒前
4秒前
5秒前
猫猫侠完成签到,获得积分10
5秒前
wjmmmmm发布了新的文献求助30
5秒前
依然完成签到,获得积分10
7秒前
鸑鷟完成签到,获得积分10
7秒前
7秒前
7秒前
斑马睡不着完成签到,获得积分10
8秒前
8秒前
KK发布了新的文献求助10
8秒前
beerus完成签到,获得积分10
8秒前
玲玲玲发布了新的文献求助10
10秒前
PB发布了新的文献求助10
10秒前
11秒前
12秒前
777发布了新的文献求助10
13秒前
TqcPisces完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
无奈凝莲完成签到,获得积分10
14秒前
15秒前
科研通AI5应助越宝采纳,获得30
15秒前
15秒前
15秒前
踏实语海完成签到,获得积分10
15秒前
深情安青应助字符串采纳,获得10
18秒前
上官若男应助十六采纳,获得30
18秒前
踏实语海发布了新的文献求助10
18秒前
曾经的鸡翅完成签到,获得积分10
19秒前
轻松曲奇发布了新的文献求助20
21秒前
热风邮递员完成签到,获得积分10
21秒前
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398332
捐赠科研通 3076344
什么是DOI,文献DOI怎么找? 1689769
邀请新用户注册赠送积分活动 813254
科研通“疑难数据库(出版商)”最低求助积分说明 767599