Improved accuracy and efficiency of primary care fall risk screening of older adults using a machine learning approach

医学 防坠落 伤害预防 风险评估 接收机工作特性 毒物控制 心理干预 人口 职业安全与健康 机器学习 人工智能 医疗急救 护理部 环境卫生 内科学 计算机科学 计算机安全 病理
作者
Wenyu Song,Nancy K. Latham,Luwei Liu,Hannah Rice,Michael Sainlaire,Lillian Min,Linying Zhang,Tien Thai,Min‐Jeoung Kang,Siyun Li,Christian Tejeda,Stuart R. Lipsitz,Lipika Samal,Diane L. Carroll,Lesley Adkison,Lisa Herlihy,Virginia Ryan,David W. Bates,Patricia C. Dykes
出处
期刊:Journal of the American Geriatrics Society [Wiley]
卷期号:72 (4): 1145-1154 被引量:9
标识
DOI:10.1111/jgs.18776
摘要

Abstract Background While many falls are preventable, they remain a leading cause of injury and death in older adults. Primary care clinics largely rely on screening questionnaires to identify people at risk of falls. Limitations of standard fall risk screening questionnaires include suboptimal accuracy, missing data, and non‐standard formats, which hinder early identification of risk and prevention of fall injury. We used machine learning methods to develop and evaluate electronic health record (EHR)‐based tools to identify older adults at risk of fall‐related injuries in a primary care population and compared this approach to standard fall screening questionnaires. Methods Using patient‐level clinical data from an integrated healthcare system consisting of 16‐member institutions, we conducted a case–control study to develop and evaluate prediction models for fall‐related injuries in older adults. Questionnaire‐derived prediction with three questions from a commonly used fall risk screening tool was evaluated. We then developed four temporal machine learning models using routinely available longitudinal EHR data to predict the future risk of fall injury. We also developed a fall injury‐prevention clinical decision support (CDS) implementation prototype to link preventative interventions to patient‐specific fall injury risk factors. Results Questionnaire‐based risk screening achieved area under the receiver operating characteristic curve (AUC) up to 0.59 with 23% to 33% similarity for each pair of three fall injury screening questions. EHR‐based machine learning risk screening showed significantly improved performance (best AUROC = 0.76), with similar prediction performance between 6‐month and one‐year prediction models. Conclusions The current method of questionnaire‐based fall risk screening of older adults is suboptimal with redundant items, inadequate precision, and no linkage to prevention. A machine learning fall injury prediction method can accurately predict risk with superior sensitivity while freeing up clinical time for initiating personalized fall prevention interventions. The developed algorithm and data science pipeline can impact routine primary care fall prevention practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
今天只做一件事应助aaa采纳,获得10
2秒前
鸟鸣发布了新的文献求助10
2秒前
yakyi发布了新的文献求助10
2秒前
tu123发布了新的文献求助10
2秒前
3秒前
正直的博发布了新的文献求助10
3秒前
3秒前
4秒前
秦磊发布了新的文献求助10
4秒前
penny0000完成签到,获得积分10
4秒前
Hello应助ran采纳,获得10
4秒前
幽梦挽歌完成签到,获得积分10
5秒前
扶溪筠发布了新的文献求助10
6秒前
6秒前
牛东升发布了新的文献求助10
6秒前
SciGPT应助海的呼唤采纳,获得10
7秒前
7秒前
于禄祥发布了新的文献求助10
8秒前
大个应助跑在颖采纳,获得10
8秒前
HJJHJH发布了新的文献求助20
8秒前
星辰大海应助肖恒采纳,获得10
8秒前
五月发布了新的文献求助20
9秒前
笨笨中心发布了新的文献求助10
10秒前
10秒前
10秒前
忐忑的远山完成签到,获得积分10
10秒前
menghongmei发布了新的文献求助10
10秒前
orixero应助和尚哥采纳,获得10
11秒前
11秒前
11秒前
SciGPT应助lj采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4839688
求助须知:如何正确求助?哪些是违规求助? 4142259
关于积分的说明 12823395
捐赠科研通 3887159
什么是DOI,文献DOI怎么找? 2137133
邀请新用户注册赠送积分活动 1157203
关于科研通互助平台的介绍 1057107