水声通信
相移键控
直接序列扩频
水下
扩频
键控
电子工程
计算机科学
误码率
通信系统
电信
干扰(通信)
工程类
频道(广播)
地理
考古
作者
Yu‐Zhong Zhang,Zhenyi Zhao,Xinglong Feng,Tianyi Zhao,Qiao Hu
出处
期刊:Biomimetics
[Multidisciplinary Digital Publishing Institute]
日期:2024-02-09
卷期号:9 (2): 103-103
被引量:1
标识
DOI:10.3390/biomimetics9020103
摘要
Stable communication technologies in complex waters are a prerequisite for underwater operations. Underwater acoustic communication is susceptible to multipath interference, while underwater optical communication is susceptible to environmental impact. The underwater electric field communication established based on the weak electric fish perception mechanism is not susceptible to environmental interference, and the communication is stable. It is a new type of underwater communication technology. To address issues like short communication distances and high bit error rates in existing underwater electric field communication systems, this study focuses on underwater electric field communication systems based on direct sequence spread spectrum (DSSS) and binary phase shift keying (BPSK) modulation techniques. To verify the feasibility of the established spread spectrum electric field communication system, static communication experiments were carried out in a swimming pool using the DSSS-based system. The experimental results show that in fresh water with a conductivity of 739 μS/cm, the system can achieve underwater current electric field communication within a 11.2 m range with 10
科研通智能强力驱动
Strongly Powered by AbleSci AI