A light weight multi-scale feature fusion steel surface defect detection model based on YOLOv8

曲面(拓扑) 融合 特征(语言学) 比例(比率) 材料科学 人工智能 计算机科学 模式识别(心理学) 数学 几何学 物理 哲学 语言学 量子力学
作者
Weining Xie,Xiaoyong Sun,Weifeng Ma
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055017-055017 被引量:18
标识
DOI:10.1088/1361-6501/ad296d
摘要

Abstract In industrial production, the steel surface may incur different defects owing to the influence of external factors, thereby affecting the performance of steel. With the increasing requirements for steel quality, achieving efficient detection of steel surface defects is a difficult problem that urgently needs to be solved. Traditional steel surface defect detection methods are limited by poor detection performance and slow detection speed. Therefore, a model named LMS-YOLO, based on YOLOv8, is proposed in this paper for achieving efficient steel surface defect detection. Firstly, in backbone, the light weight multi-scale mixed convolution (LMSMC) module is designed to fuse with C2f to obtain C2f_LMSMC, so as to extract the features of different scales for fusion and achieve the light weight of the network. Meanwhile, the proposed efficient global attention mechanism was added to backbone to enhance cross dimensional information interaction and feature extraction capabilities, and to achieve a more efficient attention mechanism. In neck, using channel tuning to achieve better cross scale fusion in BiFPN. Finally, the model uses three independent decoupled heads for regression and classification, and replaces CIoU with NWD as the regression loss to enhance the effect of detecting small scale defects. The experimental results showed that LMS-YOLO achieved 81.1 mAP and 61.3 FPS on NEU-DET, 80.5 mAP and 61.3 FPS on GC10-DET, respectively. The mAP increased by 2.8 and 4.7 compared to YOLOv8, and decreased by 17.4% in floating point operations (GFLOPs) and 34.2% in parameters (Params), which indicates that the model proposed in this paper has a better comprehensive performance compared with other methods in steel surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助HS采纳,获得10
1秒前
于清绝完成签到 ,获得积分10
2秒前
杨佳晨发布了新的文献求助10
3秒前
科目三应助科研通管家采纳,获得30
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Azhou应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
贰鸟应助科研通管家采纳,获得20
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
斯文败类应助关天木采纳,获得10
6秒前
6秒前
机灵的幻灵完成签到 ,获得积分10
6秒前
7秒前
8秒前
ding应助舒服的觅夏采纳,获得10
9秒前
星夜发布了新的文献求助10
12秒前
莓莓崽发布了新的文献求助10
14秒前
15秒前
听风飘逸发布了新的文献求助10
17秒前
关天木发布了新的文献求助10
19秒前
EvaHo完成签到,获得积分10
20秒前
23秒前
云影cns完成签到 ,获得积分10
24秒前
超级蘑菇完成签到 ,获得积分10
26秒前
tdtk发布了新的文献求助10
27秒前
hansJAMA发布了新的文献求助30
28秒前
现代的擎苍完成签到,获得积分10
29秒前
29秒前
30秒前
香蕉觅云应助两味愚采纳,获得10
32秒前
小二郎应助星夜采纳,获得10
32秒前
wonder123发布了新的文献求助10
33秒前
华仔应助bob采纳,获得10
33秒前
HS发布了新的文献求助10
34秒前
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133