Chest x-ray diagnosis via spatial-channel high-order attention representation learning

计算机科学 特征学习 人工智能 特征(语言学) 背景(考古学) 代表(政治) 模式识别(心理学) 频道(广播) 机器学习 法学 古生物学 计算机网络 哲学 语言学 生物 政治 政治学
作者
Xinyue Gao,Bo Jiang,Xixi Wang,Lili Huang,Zhengzheng Tu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (4): 045026-045026
标识
DOI:10.1088/1361-6560/ad2014
摘要

Abstract Objective . Chest x-ray image representation and learning is an important problem in computer-aided diagnostic area. Existing methods usually adopt CNN or Transformers for feature representation learning and focus on learning effective representations for chest x-ray images. Although good performance can be obtained, however, these works are still limited mainly due to the ignorance of mining the correlations of channels and pay little attention on the local context-aware feature representation of chest x-ray image. Approach . To address these problems, in this paper, we propose a novel spatial-channel high-order attention model (SCHA) for chest x-ray image representation and diagnosis. The proposed network architecture mainly contains three modules, i.e. CEBN, SHAM and CHAM. To be specific, firstly, we introduce a context-enhanced backbone network by employing multi-head self-attention to extract initial features for the input chest x-ray images. Then, we develop a novel SCHA which contains both spatial and channel high-order attention learning branches. For the spatial branch, we develop a novel local biased self-attention mechanism which can capture both local and long-range global dependences of positions to learn rich context-aware representation. For the channel branch, we employ Brownian Distance Covariance to encode the correlation information of channels and regard it as the image representation. Finally, the two learning branches are integrated together for the final multi-label diagnosis classification and prediction. Main results . Experiments on the commonly used datasets including ChestX-ray14 and CheXpert demonstrate that our proposed SCHA approach can obtain better performance when comparing many related approaches. Significance . This study obtains a more discriminative method for chest x-ray classification and provides a technique for computer-aided diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
socroz发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
飞鱼发布了新的文献求助10
2秒前
2秒前
Naza1119发布了新的文献求助10
3秒前
wealan发布了新的文献求助10
4秒前
Jasper应助钱塘小虾米采纳,获得10
4秒前
WY发布了新的文献求助30
5秒前
端庄的以寒完成签到,获得积分10
5秒前
CipherSage应助keira采纳,获得10
5秒前
曾经梦松完成签到,获得积分10
6秒前
丘比特应助清爽大山采纳,获得10
6秒前
研友_VZG7GZ应助hooke采纳,获得10
6秒前
XIXI完成签到,获得积分10
7秒前
pengpeng完成签到,获得积分10
7秒前
7秒前
lanxinyue完成签到,获得积分0
7秒前
难过的一一完成签到,获得积分10
7秒前
RapGod完成签到,获得积分10
7秒前
李爱国应助111采纳,获得10
8秒前
宇文无施完成签到,获得积分10
8秒前
9秒前
什么什么哇偶完成签到 ,获得积分10
9秒前
烟花应助Zll采纳,获得10
10秒前
10秒前
zzz发布了新的文献求助10
10秒前
科研通AI5应助地表飞猪采纳,获得10
10秒前
11秒前
wuyanan513发布了新的文献求助10
11秒前
奋斗灵竹完成签到,获得积分10
13秒前
14秒前
不吃芹菜发布了新的文献求助30
15秒前
鉨汏闫发布了新的文献求助10
15秒前
16秒前
Lance先生完成签到,获得积分10
17秒前
文艺完成签到,获得积分10
18秒前
科研三井泽完成签到,获得积分10
20秒前
许甜甜鸭应助AHR采纳,获得10
20秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
The Effect of Irrigation Solutions on Recurrence of Chronic Subdural Hematoma: A Consecutive Cohort Study of 234 Patients 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Introduction to Linear Optimization, by Dimitris Bertsimas and John N. Tsitsiklis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828462
求助须知:如何正确求助?哪些是违规求助? 3370778
关于积分的说明 10464992
捐赠科研通 3090721
什么是DOI,文献DOI怎么找? 1700503
邀请新用户注册赠送积分活动 817885
科研通“疑难数据库(出版商)”最低求助积分说明 770571