Predicting Gross Primary Productivity of the Forest Ecosystems using Machine Learning Techniques: A Review of Existing Approaches

生产力 初级生产力 生态系统 初级生产 小学(天文学) 人工智能 计算机科学 环境科学 机器学习 生态学 生物 经济 物理 宏观经济学 天文
作者
Gaurav Agarwal,Pramit Kumar Deb Burman,Pranali Kosamkar,V Y Kulkarni
出处
期刊:IOP conference series [IOP Publishing]
卷期号:1285 (1): 012014-012014 被引量:1
标识
DOI:10.1088/1755-1315/1285/1/012014
摘要

Abstract Photosynthesis is a biotic process in which the plants assimilate the atmospheric CO 2 into the sugar molecules in the presence of solar energy. The carbon uptake by plants in this process is defined as gross primary productivity (GPP). A part of this assimilated carbon is used by the plants to support their physiological activities which are defined as the respiration. The sequestration of carbon by the terrestrial ecosystems holds significance as a vital element of Earth’s carbon cycle and constitutes a major sink for the climate change mitigation. The crop yield of any agricultural field is directly linked with its GPP which is important in the aspect of food security and economy. Hence, quantifying the GPP of terrestrial ecosystems is an active branch of study and several methods have been used to address this. In recent times, the machine learning (ML) methods connecting the benefits of artificial intelligence (AI) have gained increased interest and different such methods are being used to address different scientific and technological problems. In addition to the traditional methods, several ML techniques have also been explored by several researchers for the GPP estimation. Studies have shown that ML models can produce GPP predictions with more accuracy. A comprehensive review of these methods will be helpful for the researchers due to a rapid development in this field. This paper offers a comprehensive analysis of various existing ML techniques to estimate the GPP, providing a comparative review of their effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Medicovv采纳,获得10
刚刚
陈俊辉发布了新的文献求助10
刚刚
Daisy发布了新的文献求助10
1秒前
慕青应助da_line采纳,获得20
1秒前
3秒前
4秒前
昵称231完成签到,获得积分10
5秒前
SYLH应助科研通管家采纳,获得20
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
Xiaoxiao应助科研通管家采纳,获得10
6秒前
hx发布了新的文献求助10
7秒前
cocopepsi完成签到,获得积分10
7秒前
精明的海蓝完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
在水一方应助淡然丹寒采纳,获得10
10秒前
Daisy完成签到,获得积分10
10秒前
12秒前
陈俊辉完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
哈哈哈发布了新的文献求助20
14秒前
小兔叽完成签到,获得积分10
14秒前
15秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4044477
求助须知:如何正确求助?哪些是违规求助? 3582345
关于积分的说明 11386075
捐赠科研通 3309288
什么是DOI,文献DOI怎么找? 1821478
邀请新用户注册赠送积分活动 893828
科研通“疑难数据库(出版商)”最低求助积分说明 815830