TMBL: Transformer-based multimodal binding learning model for multimodal sentiment analysis

计算机科学 模态(人机交互) 人工智能 模式 卷积神经网络 源代码 特征(语言学) 特征学习 变压器 模式识别(心理学) 机器学习 社会科学 语言学 电压 社会学 哲学 物理 操作系统 量子力学
作者
Jiehui Huang,Jun Zhou,Zhenchao Tang,Jiaying Lin,Calvin Yu‐Chian Chen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111346-111346 被引量:16
标识
DOI:10.1016/j.knosys.2023.111346
摘要

Multimodal emotion analysis is an important endeavor in human–computer interaction research, as it enables the accurate identification of an individual's emotional state by simultaneously analyzing text, video, and sound features. Although current emotion recognition algorithms have performed well using multimodal fusion strategies, two key challenges remain. The first challenge is the efficient extraction of modality-invariant and modality-specific features prior to fusion, which requires deep feature interactions between the different modalities. The second challenge concerns the ability to distinguish high-level semantic relations between modality features. To address these issues, we propose a new modality-binding learning framework and redesign the internal structure of the transformer model. Our proposed modality binding learning model addresses the first challenge by incorporating bimodal and trimodal binding mechanisms. These mechanisms handle modality-specific and modality-invariant features, respectively, and facilitate cross-modality interactions. Furthermore, we enhance feature interactions by introducing fine-grained convolution modules in the feedforward and attention layers of the transformer structure. To address the second issue, we introduce CLS and PE feature vectors for modality-invariant and modality-specific features, respectively. We use similarity loss and dissimilarity loss to support model convergence. Experiments on the widely used MOSI and MOSEI datasets show that our proposed method outperforms state-of-the-art multimodal sentiment classification approaches, confirming its effectiveness and superiority. The source code can be found at https://github.com/JackAILab/TMBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyfzyf完成签到,获得积分10
2秒前
Linda完成签到 ,获得积分10
2秒前
李健应助姜茶采纳,获得10
3秒前
爱笑的访梦完成签到,获得积分10
3秒前
如约而至给如约而至的求助进行了留言
3秒前
3秒前
谜记完成签到,获得积分10
3秒前
myl完成签到,获得积分10
3秒前
4秒前
4秒前
takeitboy发布了新的文献求助10
5秒前
Singularity应助陈平安采纳,获得10
5秒前
Helic完成签到,获得积分10
5秒前
妮妮发布了新的文献求助10
5秒前
yuneoki关注了科研通微信公众号
6秒前
康康0919ing完成签到,获得积分10
6秒前
Jasoncheng完成签到,获得积分10
6秒前
wyw123完成签到,获得积分10
6秒前
8秒前
Zhao_Kai发布了新的文献求助10
9秒前
9秒前
姜茶完成签到,获得积分10
10秒前
10秒前
房LY完成签到,获得积分10
11秒前
11秒前
火星上觅夏完成签到,获得积分10
11秒前
灰色铅笔发布了新的文献求助10
11秒前
Tina完成签到,获得积分10
12秒前
12秒前
12秒前
自由井完成签到,获得积分10
13秒前
SuMX发布了新的文献求助10
13秒前
13秒前
昏睡的岂愈完成签到,获得积分10
13秒前
13秒前
结实的德地完成签到,获得积分10
14秒前
姜茶发布了新的文献求助10
14秒前
14秒前
Annie完成签到 ,获得积分10
14秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795794
求助须知:如何正确求助?哪些是违规求助? 3340791
关于积分的说明 10302239
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677651
邀请新用户注册赠送积分活动 805524
科研通“疑难数据库(出版商)”最低求助积分说明 762642