Efficacy of ChatGPT in Cantonese Sentiment Analysis: Comparative Study

情绪分析 词典 计算机科学 人工智能 自然语言处理 支持向量机 众包 机器学习 万维网
作者
Ziru FU,Yu‐Cheng Hsu,Christian S. Chan,C. Lau,Joyce Liu,Paul Yip
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e51069-e51069 被引量:28
标识
DOI:10.2196/51069
摘要

Background Sentiment analysis is a significant yet difficult task in natural language processing. The linguistic peculiarities of Cantonese, including its high similarity with Standard Chinese, its grammatical and lexical uniqueness, and its colloquialism and multilingualism, make it different from other languages and pose additional challenges to sentiment analysis. Recent advances in models such as ChatGPT offer potential viable solutions. Objective This study investigated the efficacy of GPT-3.5 and GPT-4 in Cantonese sentiment analysis in the context of web-based counseling and compared their performance with other mainstream methods, including lexicon-based methods and machine learning approaches. Methods We analyzed transcripts from a web-based, text-based counseling service in Hong Kong, including a total of 131 individual counseling sessions and 6169 messages between counselors and help-seekers. First, a codebook was developed for human annotation. A simple prompt (“Is the sentiment of this Cantonese text positive, neutral, or negative? Respond with the sentiment label only.”) was then given to GPT-3.5 and GPT-4 to label each message’s sentiment. GPT-3.5 and GPT-4’s performance was compared with a lexicon-based method and 3 state-of-the-art models, including linear regression, support vector machines, and long short-term memory neural networks. Results Our findings revealed ChatGPT’s remarkable accuracy in sentiment classification, with GPT-3.5 and GPT-4, respectively, achieving 92.1% (5682/6169) and 95.3% (5880/6169) accuracy in identifying positive, neutral, and negative sentiment, thereby outperforming the traditional lexicon-based method, which had an accuracy of 37.2% (2295/6169), and the 3 machine learning models, which had accuracies ranging from 66% (4072/6169) to 70.9% (4374/6169). Conclusions Among many text analysis techniques, ChatGPT demonstrates superior accuracy and emerges as a promising tool for Cantonese sentiment analysis. This study also highlights ChatGPT’s applicability in real-world scenarios, such as monitoring the quality of text-based counseling services and detecting message-level sentiments in vivo. The insights derived from this study pave the way for further exploration into the capabilities of ChatGPT in the context of underresourced languages and specialized domains like psychotherapy and natural language processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨一发布了新的文献求助20
1秒前
科研通AI2S应助w王采纳,获得10
1秒前
小聖发布了新的文献求助10
1秒前
Hank完成签到,获得积分10
1秒前
2秒前
Leonard_Canon发布了新的文献求助10
2秒前
进步完成签到,获得积分10
3秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
yznfly应助科研通管家采纳,获得80
4秒前
无花果应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Takahara2000应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
赘婿应助林水程采纳,获得10
6秒前
呆萌的可乐完成签到,获得积分20
7秒前
科目三应助黎日新采纳,获得10
8秒前
9秒前
Lucas应助yuzi采纳,获得20
9秒前
9秒前
顺心翠丝完成签到,获得积分10
9秒前
余生完成签到,获得积分10
9秒前
zhouzhou发布了新的文献求助10
10秒前
King发布了新的文献求助10
11秒前
张海新发布了新的文献求助30
11秒前
Hello应助科研欢采纳,获得10
11秒前
yuzi完成签到,获得积分10
12秒前
12秒前
李娜完成签到,获得积分10
12秒前
lqq发布了新的文献求助10
13秒前
13秒前
怡然的飞珍完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428779
求助须知:如何正确求助?哪些是违规求助? 4542375
关于积分的说明 14180447
捐赠科研通 4460069
什么是DOI,文献DOI怎么找? 2445607
邀请新用户注册赠送积分活动 1436824
关于科研通互助平台的介绍 1414012