RCAR-UNet: Retinal vessel segmentation network algorithm via novel rough attention mechanism

雅卡索引 计算机科学 分割 人工智能 模式识别(心理学) 人工神经网络 特征(语言学) 频道(广播) 电信 语言学 哲学
作者
Weiping Ding,Ying Sun,Jiashuang Huang,Hengrong Ju,Chongsheng Zhang,Guang Yang,Chin‐Teng Lin
出处
期刊:Information Sciences [Elsevier BV]
卷期号:657: 120007-120007 被引量:16
标识
DOI:10.1016/j.ins.2023.120007
摘要

The health status of the retinal blood vessels is a significant reference for rapid and non-invasive diagnosis of various ophthalmological, diabetic, and cardio-cerebrovascular diseases. However, retinal vessels are characterized by ambiguous boundaries, with multiple thicknesses and obscured lesion areas. These phenomena cause deep neural networks to face the characteristic channel uncertainty when segmenting retinal blood vessels. The uncertainty in feature channels will affect the channel attention coefficient, making the deep neural network incapable of paying attention to the detailed features of retinal vessels. This study proposes a retinal vessel segmentation via a rough channel attention mechanism. First, the method integrates deep neural networks to learn complex features and rough sets to handle uncertainty for designing rough neurons. Second, a rough channel attention mechanism module is constructed based on rough neurons, and embedded in U-Net skip connection for the integration of high-level and low-level features. Then, the residual connections are added to transmit low-level features to high-level to enrich network feature extraction and help back-propagate the gradient when training the model. Finally, multiple comparison experiments were carried out on three public fundus retinal image datasets to verify the validity of Rough Channel Attention Residual U-Net (RCAR-UNet) model. The results show that the RCAR-UNet model offers high superiority in accuracy, sensitivity, F1, and Jaccard similarity, especially for the precise segmentation of fragile blood vessels, guaranteeing blood vessels’ continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助慈祥的绮采纳,获得10
1秒前
纯情的山河完成签到,获得积分10
2秒前
kytwenxian完成签到,获得积分0
3秒前
西乡塘塘主完成签到,获得积分10
3秒前
闪闪完成签到 ,获得积分10
5秒前
电催化CYY完成签到,获得积分10
6秒前
小红书求接接接接一篇完成签到,获得积分20
6秒前
8秒前
mmz完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
小橙子完成签到,获得积分10
10秒前
11秒前
Ryan完成签到,获得积分20
11秒前
正值清白之年完成签到,获得积分10
12秒前
xd发布了新的文献求助10
12秒前
13秒前
悦耳静枫发布了新的文献求助30
14秒前
Jasper应助kkkl采纳,获得10
14秒前
14秒前
科目三应助闻闻采纳,获得10
15秒前
Qovn完成签到,获得积分10
15秒前
netrandwalk完成签到,获得积分10
16秒前
tian完成签到 ,获得积分10
16秒前
Ryan发布了新的文献求助10
17秒前
18秒前
18秒前
streetpants发布了新的文献求助10
19秒前
科研通AI5应助麦子采纳,获得10
20秒前
陈嘻嘻完成签到 ,获得积分10
21秒前
22秒前
22秒前
wanci应助花誓lydia采纳,获得10
23秒前
23秒前
Lee发布了新的文献求助50
24秒前
ABCDEFG发布了新的文献求助30
25秒前
受伤问凝完成签到 ,获得积分10
26秒前
怡然的乘风完成签到 ,获得积分10
26秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742