已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Abiotic Long-Term Simulation of Microplastic Weathering Pathways under Different Aqueous Conditions

环境化学 风化作用 期限(时间) 非生物成分 化学 环境科学 环境工程 生态学 地质学 生物 地球化学 量子力学 物理
作者
Janika Reineccius,Mischa Schönke,Joanna J Waniek
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (2): 963-975 被引量:36
标识
DOI:10.1021/acs.est.2c05746
摘要

Microplastics (MPs) are one of the most abundant and widespread anthropogenic pollutants worldwide. In addition to the global spread and threats of plastic to native species by carrying toxic substances, its slow degradation rate and resulting long retention time in the environment constitute a problem that is still poorly understood. In this study, five of the most manufactured plastic types were weathered under simulated beach conditions for 18 months in freshwater, brackish water, and seawater. Those included polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). PP was the first polymer type that fragmented after 9 months of weathering and influenced the pH of the surrounding water. Molecular surface changes were detected for all polymers, just after the first week. Hydroxyl bonds were one of the first groups incorporated into the polymers, weakening 2-3 weeks later. Carbonyl groups were also measured early, but with significantly different developments with time between the polymer types. Differences in degradation rates were proven between the water media, with the fastest degradation in seawater compared to brackish water and freshwater for PE and PP. These results are consistent with previous findings on MPs aged under environmental conditions and provide initial long-term observations of MP degradation pathways under simulated environmental conditions. These findings are valuable for assessing the fate and hazards of MPs in aquatic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
玖梦恨别离给玖梦恨别离的求助进行了留言
2秒前
liulongchao发布了新的文献求助20
5秒前
orixero应助丽优采纳,获得10
6秒前
7秒前
bkagyin应助lee采纳,获得30
10秒前
赘婿应助因默采纳,获得10
13秒前
13秒前
Cyan完成签到,获得积分10
13秒前
zhang完成签到,获得积分10
14秒前
14秒前
dhdafwet发布了新的文献求助30
15秒前
15秒前
Juvenilesy完成签到 ,获得积分10
19秒前
19秒前
葫芦发布了新的文献求助10
19秒前
无语的稀完成签到,获得积分10
21秒前
23秒前
renyh2002完成签到,获得积分10
26秒前
小李飞刀完成签到,获得积分10
27秒前
科研通AI2S应助苹果易真采纳,获得10
28秒前
情怀应助苹果易真采纳,获得10
29秒前
Akim应助苹果易真采纳,获得10
29秒前
科研通AI5应助苹果易真采纳,获得10
29秒前
JamesPei应助苹果易真采纳,获得10
29秒前
我是老大应助苹果易真采纳,获得10
29秒前
科研通AI5应助苹果易真采纳,获得10
29秒前
Kathy完成签到,获得积分10
29秒前
所所应助小李飞刀采纳,获得10
31秒前
recardo完成签到,获得积分10
32秒前
HilbertVon完成签到 ,获得积分10
33秒前
乐乐洛洛发布了新的文献求助10
34秒前
34秒前
38秒前
39秒前
瓷儿发布了新的文献求助10
39秒前
无花果应助乐乐洛洛采纳,获得10
40秒前
草药发布了新的文献求助10
40秒前
42秒前
NexusExplorer应助Chaos采纳,获得10
43秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837158
求助须知:如何正确求助?哪些是违规求助? 3379387
关于积分的说明 10508924
捐赠科研通 3099088
什么是DOI,文献DOI怎么找? 1706862
邀请新用户注册赠送积分活动 821288
科研通“疑难数据库(出版商)”最低求助积分说明 772499