已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Model for Estimating the Modulus of Elasticity of Asphalt Layers Using Machine Learning

沥青路面 支持向量机 沥青 平均绝对百分比误差 人工神经网络 计算机科学 机器学习 材料科学 复合材料
作者
Mila Svilar,Igor Peško,Miloš Šešlija
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (20): 10536-10536 被引量:15
标识
DOI:10.3390/app122010536
摘要

The management of roads, as well as their maintenance, calls for an adequate assessment of the load-bearing capacity of the pavement structure. This serves as the basis on which future maintenance requirements are planned and plays a significant role in determining whether the rehabilitation or reconstruction of the pavement structure is required. The stability of the pavement structure depends on a large number of parameters, and it is not possible to fully assess all of them when making an estimation. One of the most significant parameters is the modulus of elasticity of asphalt layers (EAC). The goal of this study is to use models based on machine learning to perform a quick and efficient assessment of the modulus of elasticity of asphalt layers, as well as to compare the formed models. The paper defines models for EAC estimation using machine learning, in which the input data include the measured deflections and the temperature of the upper surface of the asphalt layer. Analyses of modeling using artificial neural networks (ANNs), support vector machines (SVMs) and boosted regression trees (BRT) were compared. The SVM method showed a higher accuracy in estimating the EAC modulus, with a mean absolute percentage error (MAPE) of 7.64%, while the ANN method and the BRT achieved accuracies of 9.13% and 8.84%, respectively. Models formed in this way can be practically implemented in the management and maintenance of roads. They enable an adequate assessment of the remaining load-bearing capacity and the level of reliability of the pavement structure using non-destructive methods, at the same time reducing the financial costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强思真完成签到,获得积分20
2秒前
2秒前
Hazel发布了新的文献求助10
2秒前
3秒前
丹牛发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
6秒前
原来是尹言啊完成签到,获得积分10
6秒前
Orange应助mbf采纳,获得10
7秒前
cuize发布了新的文献求助10
7秒前
Serein完成签到,获得积分10
7秒前
开心香岚发布了新的文献求助10
8秒前
Honor完成签到 ,获得积分10
8秒前
青云完成签到,获得积分10
8秒前
hh发布了新的文献求助10
8秒前
9秒前
zyb完成签到 ,获得积分10
10秒前
11秒前
丰富的乌冬面应助Hazel采纳,获得10
11秒前
11秒前
kitsch完成签到 ,获得积分10
12秒前
下雨天发布了新的文献求助10
12秒前
俊秀的半雪完成签到,获得积分10
12秒前
13秒前
诸葛藏藏完成签到 ,获得积分10
15秒前
17秒前
18秒前
yy发布了新的文献求助10
18秒前
18秒前
18秒前
20秒前
22秒前
22秒前
完美世界应助清秀的怀蝶采纳,获得10
23秒前
小蘑菇应助cuize采纳,获得10
23秒前
23秒前
Ivy发布了新的文献求助10
23秒前
刘佳慧发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542740
求助须知:如何正确求助?哪些是违规求助? 4628923
关于积分的说明 14610398
捐赠科研通 4570124
什么是DOI,文献DOI怎么找? 2505602
邀请新用户注册赠送积分活动 1482928
关于科研通互助平台的介绍 1454290