A Transformer Framework for Data Fusion and Multi-Task Learning in Smart Cities

计算机科学 机器学习 人工智能 传感器融合
作者
Alexander C. DeRieux,Walid Saad,Wangda Zuo,Rachmawan Budiarto,Mochamad Donny Koerniawan,Dwi Novitasari
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2211.10506
摘要

Rapid global urbanization is a double-edged sword, heralding promises of economical prosperity and public health while also posing unique environmental and humanitarian challenges. Smart and connected communities (S&CCs) apply data-centric solutions to these problems by integrating artificial intelligence (AI) and the Internet of Things (IoT). This coupling of intelligent technologies also poses interesting system design challenges regarding heterogeneous data fusion and task diversity. Transformers are of particular interest to address these problems, given their success across diverse fields of natural language processing (NLP), computer vision, time-series regression, and multi-modal data fusion. This begs the question whether Transformers can be further diversified to leverage fusions of IoT data sources for heterogeneous multi-task learning in S&CC trade spaces. In this paper, a Transformer-based AI system for emerging smart cities is proposed. Designed using a pure encoder backbone, and further customized through interchangeable input embedding and output task heads, the system supports virtually any input data and output task types present S&CCs. This generalizability is demonstrated through learning diverse task sets representative of S&CC environments, including multivariate time-series regression, visual plant disease classification, and image-time-series fusion tasks using a combination of Beijing PM2.5 and Plant Village datasets. Simulation results show that the proposed Transformer-based system can handle various input data types via custom sequence embedding techniques, and are naturally suited to learning a diverse set of tasks. The results also show that multi-task learners increase both memory and computational efficiency while maintaining comparable performance to both single-task variants, and non-Transformer baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mars发布了新的文献求助10
1秒前
江峰发布了新的文献求助10
2秒前
多边形发布了新的文献求助30
2秒前
u1完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
yanen发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
LF完成签到,获得积分10
5秒前
英俊的铭应助yeyongchang_hit采纳,获得10
5秒前
new完成签到,获得积分10
6秒前
7秒前
zx发布了新的文献求助10
7秒前
cy发布了新的文献求助10
7秒前
LL发布了新的文献求助10
8秒前
8秒前
迷路冰露发布了新的文献求助10
9秒前
9秒前
冷静的自行车完成签到,获得积分10
10秒前
10秒前
yang发布了新的文献求助30
10秒前
12秒前
端庄千青发布了新的文献求助10
13秒前
Mars完成签到,获得积分10
13秒前
15秒前
smlij616完成签到 ,获得积分10
15秒前
OMR123完成签到,获得积分10
15秒前
16秒前
16秒前
李健应助cy采纳,获得10
17秒前
科研通AI5应助端庄千青采纳,获得10
17秒前
17秒前
Owen应助超级怕冷的鹿子采纳,获得10
17秒前
18秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333