Optimization of service scheduling problem for overlapping tower cranes with cooperative coevolutionary genetic algorithm

塔式起重机 作业车间调度 调度(生产过程) 计算机科学 遗传算法 数学优化 塔楼 工程类 地铁列车时刻表 数学 机器学习 土木工程 结构工程 操作系统
作者
Jing Yin,Jiahao Li,Ahui Yang,Shunyao Cai
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:31 (3): 1348-1369 被引量:10
标识
DOI:10.1108/ecam-08-2022-0767
摘要

Purpose In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but receives limited attention. The current work presents an optimization model for scheduling multiple tower cranes' service with overlapping areas while achieving collision-free between cranes. Design/methodology/approach The cooperative coevolutionary genetic algorithm (CCGA) was proposed to solve this model. Considering the possible types of cross-tasks, through effectively allocating overlapping area tasks to each crane and then prioritizing the assigned tasks for each crane, the makespan of tower cranes was minimized and the crane collision avoidance was achieved by only allowing one crane entering the overlapping area at one time. A case study of the mega project Daxing International Airport has been investigated to evaluate the performance of the proposed algorithm. Findings The computational results showed that the CCGA algorithm outperforms two compared algorithms in terms of the optimal makespan and the CPU time. Also, the convergence of CCGA was discussed and compared, which was better than that of traditional genetic algorithm (TGA) for small-sized set (50 tasks) and was almost the same as TGA for large-sized sets. Originality/value This paper can provide new perspectives on multiple tower crane service sequencing problem. The proposed model and algorithm can be applied directly to enhance the operational efficiency of tower cranes on construction site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xio完成签到,获得积分10
刚刚
优雅友菱发布了新的文献求助10
刚刚
霜降应助怕黑的向南采纳,获得10
1秒前
MAX完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
锦慜发布了新的文献求助10
4秒前
小二郎应助温婉的凌寒采纳,获得10
4秒前
5秒前
annzl完成签到,获得积分10
5秒前
7秒前
yb完成签到,获得积分10
7秒前
研友_VZG7GZ应助壹拾捌采纳,获得10
8秒前
慕剑完成签到,获得积分10
8秒前
8秒前
George发布了新的文献求助10
8秒前
10秒前
坚强白柏发布了新的文献求助10
11秒前
蓝天发布了新的文献求助10
12秒前
静静完成签到,获得积分10
12秒前
zl12应助丽丽采纳,获得10
12秒前
12秒前
li完成签到 ,获得积分10
13秒前
13秒前
14秒前
Survivor应助玛卡巴卡采纳,获得10
14秒前
思源应助玛卡巴卡采纳,获得10
14秒前
15秒前
趣多多发布了新的文献求助10
15秒前
情怀应助Puffkten采纳,获得10
16秒前
缪缪发布了新的文献求助10
18秒前
18秒前
鸽子5359完成签到 ,获得积分10
19秒前
脑洞疼应助的能用纸采纳,获得10
19秒前
万能图书馆应助甜野采纳,获得10
20秒前
20秒前
20秒前
21秒前
坚强白柏完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646