Development and evaluation of a deep learning-based system for dental age estimation using the demirjian method on panoramic radiographs

医学 口腔颌面外科 射线照相术 牙科 口腔正畸科 估计 放射科 管理 经济
作者
Yunus Balel,Kaan Sağtaş,Havva Nur Bülbül
出处
期刊:BMC Oral Health [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12903-025-06420-5
摘要

To develop and evaluate a deep learning-based model for automatic dental age estimation using the Demirjian method on panoramic radiographs, and to compare its performance with the traditional manual approach. A total of 4,800 panoramic radiographs (mean age: 10.64 years) were used to train, validate, and test a YOLOv11-based deep learning model for tooth development staging. Model performance was evaluated using precision, recall, F1 score, and mAP metrics. In addition, a separate dataset of 650 individuals (325 females, 325 males) was used to compare chronological age, manual Demirjian assessments, and AI-assisted estimations through repeated-measures ANOVA and linear regression analysis. The model achieved its highest performance in the 2nd Molar-H group (Precision: 0.99, Recall: 1.0, F1: 0.995), and its lowest in the 1st Molar-B group (Precision: 0.471, F1: 0.601). Both manual and AI-assisted Demirjian methods significantly overestimated chronological age (p < 0.001), but no significant difference was observed between them (p = 0.433). Regression analysis indicated a weak but statistically significant relationship between age and prediction error, more pronounced in the AI-assisted model (R² = 0.042). The AI-assisted system demonstrated comparable accuracy to the manual Demirjian method and showed higher performance in later stages of tooth development. The developed Python script and graphical interface allow for rapid, scalable, and user-friendly application of the method. While the system shows promise for use in clinical and forensic settings, broader validation with diverse populations and alternative model architectures is recommended before clinical deployment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏伯安发布了新的文献求助10
1秒前
斯文翠完成签到,获得积分10
1秒前
2秒前
www发布了新的文献求助30
2秒前
3秒前
燕子发布了新的文献求助30
3秒前
RC_Wang应助Kz采纳,获得10
4秒前
在水一方应助Kz采纳,获得10
4秒前
领导范儿应助小猪采纳,获得30
4秒前
小刘恨香菜完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
DT发布了新的文献求助10
9秒前
11秒前
噜lu发布了新的文献求助10
11秒前
12秒前
Suttier完成签到 ,获得积分10
13秒前
255发布了新的文献求助10
15秒前
16秒前
muba完成签到,获得积分10
16秒前
常芹发布了新的文献求助10
17秒前
务实映之完成签到,获得积分10
19秒前
19秒前
追寻书雁完成签到 ,获得积分10
20秒前
超级柠檬完成签到,获得积分10
20秒前
20秒前
不安雁菱发布了新的文献求助10
23秒前
Felix发布了新的文献求助10
23秒前
Akim应助开放的听安采纳,获得30
24秒前
25秒前
第二十篇完成签到,获得积分10
25秒前
Happy发布了新的文献求助10
26秒前
李健应助GongPeijie采纳,获得10
27秒前
寒冷迎荷完成签到,获得积分10
27秒前
深情安青应助没有熬夜采纳,获得10
28秒前
Lucas应助axiba采纳,获得10
28秒前
28秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479336
求助须知:如何正确求助?哪些是违规求助? 3936825
关于积分的说明 12213102
捐赠科研通 3591524
什么是DOI,文献DOI怎么找? 1975029
邀请新用户注册赠送积分活动 1012172
科研通“疑难数据库(出版商)”最低求助积分说明 905551