Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate

石墨烯 基质(水族馆) 环境友好型 材料科学 计算机科学 理论(学习稳定性) 纳米技术 机器学习 冶金 生物 生态学
作者
Himanshu Prasad Mamgain,Maria Vittoria Diamanti,Pravat Ranjan Pati,M. E. Mohamed,Jitendra Kumar Pandey,Nitin Bhardwaj,Ankit Vasudeva,Mohammad Kanan
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-18155-y
摘要

This study inspects the integration of machine learning (ML) techniques with materials science to develop durable, eco-friendly superhydrophobic (SHP) graphene-based coatings for copper. We employed various ML and regression models, including XGBoost, polynomial regression models, Random Forest (RF), K-Nearest Neighbours (KNN), and Support Vector Regression (SVR), to predict the stability of the contact angle (CA) under different stress conditions, such as NaCl immersion, abrasion cycles, tape peeling tests, sand impact, and open-air exposure. Our findings demonstrate that ensemble learning models, particularly XGBoost and Random Forest, outperform traditional regression techniques by effectively capturing nonlinear dependencies between stress parameters and CA retention. Higher-order polynomial regression models also exhibit strong predictive accuracy, making them well-suited for conditions where CA follows a well-defined trend. In contrast, SVR and KNN show limited generalization due to their sensitivity to hyperparameter selection and local interpolation effects, leading to weaker performance in datasets with high variability. ML-based algorithms predict CA values for tested coatings at longer term with respect to experimental tests, and underlined the beneficial effect of graphene incorporation in the coatings to extend the service life and preserve superhydrophobicity, overall reflecting the material's resilience under mechanical stress. The study highlights the importance of advanced predictive models, such as higher-degree polynomial regression and XGBoost, in capturing the complex relationships between variables influencing coating stability. Additionally, the integration of these models significantly accelerates the design and analysis process by reducing the reliance on time-consuming experimental testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的枫叶应助HopeStar采纳,获得10
1秒前
华海亦发布了新的文献求助10
1秒前
杨玲完成签到 ,获得积分10
1秒前
cavendipeng完成签到,获得积分10
2秒前
巨星不吃辣完成签到,获得积分10
2秒前
4秒前
Naturie完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助50
8秒前
8秒前
CodeCraft应助june采纳,获得10
8秒前
Hilda007应助yin印采纳,获得10
8秒前
烟花应助ZY采纳,获得10
9秒前
卓若之完成签到 ,获得积分10
9秒前
完美世界应助可爱的绮露采纳,获得10
10秒前
10秒前
心灵美的元枫完成签到,获得积分10
10秒前
10秒前
tt完成签到 ,获得积分10
11秒前
11秒前
12秒前
wang完成签到 ,获得积分10
13秒前
13秒前
争气完成签到 ,获得积分10
15秒前
Hank发布了新的文献求助10
15秒前
茉莉猫哟发布了新的文献求助10
15秒前
科研通AI2S应助HopeStar采纳,获得10
16秒前
16秒前
16秒前
852应助sy采纳,获得30
18秒前
21秒前
HopeStar完成签到,获得积分10
22秒前
bright完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助50
24秒前
Kimhy完成签到,获得积分10
24秒前
闪闪念文完成签到 ,获得积分10
25秒前
吴彦祖的通通完成签到,获得积分10
25秒前
你行啊你行了吧完成签到,获得积分20
25秒前
zxy完成签到,获得积分10
26秒前
26秒前
情怀应助梁成伟采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5055726
求助须知:如何正确求助?哪些是违规求助? 4281466
关于积分的说明 13342722
捐赠科研通 4098249
什么是DOI,文献DOI怎么找? 2243484
邀请新用户注册赠送积分活动 1249560
关于科研通互助平台的介绍 1179850