Machine Learning–Augmented Optimization of Large Bilevel and Two-Stage Stochastic Programs: Application to Cycling Network Design

双层优化 计算机科学 代表(政治) 利用 集合(抽象数据类型) 网络规划与设计 功能(生物学) 数学优化 运筹学 工作(物理) 质量(理念) 最优化问题 工程类 数学 算法 认识论 政治 生物 机械工程 哲学 进化生物学 计算机安全 程序设计语言 法学 计算机网络 政治学
作者
Timothy C. Y. Chan,Bo Lin,Shoshanna Saxe
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:27 (6): 1851-1868 被引量:2
标识
DOI:10.1287/msom.2024.1317
摘要

Problem definition: A wide range of decision problems can be formulated as bilevel programs with independent followers, which, as a special case, include two-stage stochastic programs. These problems are notoriously difficult to solve, especially when a large number of followers are present. Motivated by a real-world cycling infrastructure planning application, we present a general approach to solving such problems. Methodology/results: We propose an optimization model that explicitly considers a sampled subset of followers and exploits a machine learning model to estimate the objective values of unsampled followers. We prove bounds on the optimality gap of the generated leader decision as measured by the original objective function that considers the full follower set. We then develop follower sampling algorithms to tighten the bounds and a representation learning approach to learn follower features, which are used as inputs to the embedded machine learning model. Through numerical studies, we show that our approach generates leader decisions of higher quality compared with baselines. Finally, in collaboration with the City of Toronto, we perform a real-world case study in Toronto, where we solve a cycling network design problem with over one million followers. Compared with the current practice, our approach improves Toronto’s cycling accessibility by 19.2%, equivalent to $18 million in potential cost savings. Managerial implications: Our approach is being used to inform the cycling infrastructure planning in Toronto and can be generalized to any decision problems that are formulated as bilevel programs with independent followers. Funding: This work was supported by City of Toronto Transportation Services and the Natural Sciences and Engineering Research Council of Canada [NSERC Alliance Grant ALLRP 561212-20]. Supplemental Material: The electronic companion is available at https://doi.org/10.1287/msom.2024.1317 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕子发布了新的文献求助10
刚刚
hw发布了新的文献求助10
1秒前
无极微光应助zzdd采纳,获得20
1秒前
哈库呐马塔塔完成签到,获得积分20
1秒前
2秒前
凝子老师发布了新的文献求助10
4秒前
DQ发布了新的文献求助10
5秒前
5秒前
5秒前
Orange应助张钰豪采纳,获得10
6秒前
Angus发布了新的文献求助10
6秒前
luxia完成签到 ,获得积分10
6秒前
王静静完成签到,获得积分10
9秒前
学无止境发布了新的文献求助10
9秒前
Mason完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
愤怒的狗发布了新的文献求助10
12秒前
香蕉觅云应助细心的孤萍采纳,获得10
13秒前
微笑糖豆完成签到 ,获得积分20
13秒前
贾明灵完成签到,获得积分10
14秒前
珏晴应助欣喜采纳,获得10
15秒前
17秒前
manqingqian发布了新的文献求助10
17秒前
Ice发布了新的文献求助10
17秒前
18秒前
twistzzz完成签到,获得积分10
18秒前
18秒前
Akim应助负责的数据线采纳,获得10
19秒前
王十发布了新的文献求助10
21秒前
21秒前
21秒前
ding应助DQ采纳,获得10
23秒前
852应助ax8888采纳,获得10
24秒前
韦昌格完成签到,获得积分10
24秒前
benj完成签到,获得积分10
26秒前
夏茉弋发布了新的文献求助10
26秒前
早日毕业完成签到,获得积分10
27秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605800
求助须知:如何正确求助?哪些是违规求助? 4690380
关于积分的说明 14863364
捐赠科研通 4702785
什么是DOI,文献DOI怎么找? 2542289
邀请新用户注册赠送积分活动 1507901
关于科研通互助平台的介绍 1472161