材料科学
分解水
原子层沉积
图层(电子)
飞秒
沉积(地质)
膜
化学工程
激光烧蚀
激光器
光电子学
纳米技术
光催化
光学
催化作用
工程类
沉积物
化学
古生物学
物理
生物
生物化学
遗传学
作者
Andrii Lys,Iaroslav Gnilitskyi,Emerson Coy,Mariusz Jancelewicz,Mikhaël Bechelany,Igor Iatsunskyi
标识
DOI:10.1021/acsami.5c07488
摘要
Efficient and scalable photoelectrodes are essential for advancing solar-driven hydrogen production via photoelectrochemical (PEC) water splitting. This work presents a novel binder-free Ti-TiO2 membrane photoanode engineered by the synergy of femtosecond laser ablation and atomic layer deposition (ALD). Laser processing produced a highly ordered array of micro pyramids on titanium foil, significantly increasing the surface area and light-trapping capability. Subsequent ALD of TiO2 (10 and 100 nm) yielded conformal coatings with tunable crystallinity. Among the tested configurations, the 100 nm TiO2 layer showed superior performance, attributed to its enhanced crystallinity, optical absorption, and charge transport properties. The optimized membrane achieved a photocurrent density of ∼27 μA cm-2 at 1.4 V vs NHE, an IPCE (Incident photon to current conversion efficiency) of ∼31% at 275 nm, and a 3-fold increase in ABPE (Applied Bias Photon-to-current Efficiency) compared to the uncoated sample. This strategy presents a scalable and reproducible approach to high-performance, binder-free photoanodes for solar hydrogen production.
科研通智能强力驱动
Strongly Powered by AbleSci AI