Immobilization Protocols of Nanozyme with Different Morphologies in Microfluidic Chips for Biosensing

作者
Caixia Zhu,Kaiyuan Wang,Yanqin Lv,Songqin Liu,Yanfei Shen,Yuanjian Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (42): 57967-57975
标识
DOI:10.1021/acsami.5c14204
摘要

Owing to their capabilities for product separation and controlled substance flow, microfluidic chips (MFC) offer a highly efficient and integrated reaction platform for nanozyme-based cascade catalysis and continuous detection. A critical factor in the design of immobilized cascade nanozyme chips with enhanced catalytic performance is the optimization of the balance between immobilization and active site exposure. Herein, cobalt-doped carbon nanozymes with diverse morphologies (zero-dimensional, one-dimensional, and two-dimensional) were employed as model systems to propose tailored immobilization strategies that balance simplicity, stability, and catalytic efficiency. Mechanism studies showed that the immobilization of nanozymes primarily relies on their close contact with the inner channel walls of the MFC, which results in the physical blockage of active sites on the nanozyme surface. Compared with the compact and spherical morphology of zero-dimensional (0D) nanozymes, the elongated and extended architectures of one-dimensional (1D) and two-dimensional (2D) nanozymes exhibit cross-linked and rich wrinkle structures, which facilitate effective immobilization while minimizing the loss of active sites. Consequently, incorporation of a binder─particularly for 0D nanozymes─was necessary, as it prevents deep embedding into the PDMS substrate and allows greater exposure of catalytically active surfaces. As a proof of concept, a microfluidic biosensor for dopamine detection was developed, demonstrating markedly enhanced stability and sensitivity following optimization of the immobilization interfaces. This work provides guidance for the selection of immobilization methods of different nanozymes in MFCs, thereby improving the practicability of nanozyme-modified MFC systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
akaMZT发布了新的文献求助10
1秒前
1秒前
科研通AI5应助拉拉采纳,获得10
1秒前
1秒前
AAA专业叉车完成签到,获得积分10
2秒前
2秒前
2秒前
科研小江完成签到,获得积分10
2秒前
3秒前
隐形曼青应助Cecilia采纳,获得10
3秒前
小小发布了新的文献求助10
3秒前
ZYK发布了新的文献求助10
4秒前
M1有光发布了新的文献求助10
4秒前
gxudmy发布了新的文献求助10
4秒前
yz123发布了新的文献求助10
4秒前
华仔应助Butler2k采纳,获得10
5秒前
充电宝应助zz采纳,获得10
5秒前
5秒前
5秒前
青塘龙仔发布了新的文献求助10
5秒前
5秒前
yummybacon完成签到,获得积分10
5秒前
6秒前
Joe发布了新的文献求助10
6秒前
LZJ发布了新的文献求助20
6秒前
三井兽完成签到,获得积分10
7秒前
小y同学发布了新的文献求助10
7秒前
领导范儿应助窦世豪采纳,获得10
7秒前
秋秋发布了新的文献求助10
7秒前
8秒前
风之子发布了新的文献求助10
8秒前
8秒前
孙晓燕发布了新的文献求助10
9秒前
梅玄完成签到,获得积分10
9秒前
落后盼望完成签到,获得积分10
10秒前
科研通AI6应助yz123采纳,获得10
10秒前
10秒前
加菲丰丰举报求助违规成功
10秒前
镓氧锌钇铀举报求助违规成功
11秒前
hrbbdhr举报求助违规成功
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251748
求助须知:如何正确求助?哪些是违规求助? 4415796
关于积分的说明 13747415
捐赠科研通 4287606
什么是DOI,文献DOI怎么找? 2352502
邀请新用户注册赠送积分活动 1349331
关于科研通互助平台的介绍 1308812