装药半径
μ介子
原子物理学
物理
羔羊移位
超精细结构
离子
奇异原子
半径
有效核电荷
电子
氦
缪铵
光谱学
电荷(物理)
原子半径
质子
核物理学
计算机安全
量子力学
计算机科学
作者
The CREMA Collaboration,Karsten Schuhmann,L. M. P. Fernandes,F. Nez,Marwan Abdou Ahmed,F. D. Amaro,Pedro Amaro,F. Biraben,Tzu-Ling Chen,D. S. Covita,A. Dax,Marc Diepold,B. Franke,Sandrine Galtier,Andrea L. Gouvea,Johannes Götzfried,T. Graf,T. W. Hänsch,M. Hildebrandt,P. Indelicato
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:9
标识
DOI:10.48550/arxiv.2305.11679
摘要
Hydrogen-like light muonic ions, in which one negative muon replaces all the electrons, are extremely sensitive probes of nuclear structure, because the large muon mass increases tremendously the wave function overlap with the nucleus. Using pulsed laser spectroscopy we have measured three 2S-2P transitions in the muonic helium-3 ion ($\mu^3$He$^+$), an ion formed by a negative muon and bare helium-3 nucleus. This allowed us to extract the Lamb shift $E(2P_{1/2}-2S_{1/2})= 1258.598(48)^{\rm exp}(3)^{\rm theo}$ meV, the 2P fine structure splitting $E_{\rm FS}^{\rm exp} = 144.958(114)$ meV, and the 2S-hyperfine splitting (HFS) $E_{\rm HFS}^{\rm exp} = -166.495(104)^{\rm exp}(3)^{\rm theo}$ meV in $\mu^3$He$^+$. Comparing these measurements to theory we determine the rms charge radius of the helion ($^3$He nucleus) to be $r_h$ = 1.97007(94) fm. This radius represents a benchmark for few nucleon theories and opens the way for precision tests in $^3$He atoms and $^3$He-ions. This radius is in good agreement with the value from elastic electron scattering, but a factor 15 more accurate. Combining our Lamb shift measurement with our earlier one in $\mu^4$He$^+$ we obtain $r_h^2-r_\alpha^2 = 1.0636(6)^{\rm exp}(30)^{\rm theo}$ fm$^2$ to be compared to results from the isotope shift measurements in regular He atoms, which are however affected by long-standing tensions. By comparing $E_{\rm HFS}^{\rm exp}$ with theory we also obtain the two-photon-exchange contribution (including higher orders) which is another important benchmark for ab-initio few-nucleon theories aiming at understanding the magnetic and current structure of light nuclei.
科研通智能强力驱动
Strongly Powered by AbleSci AI