Data‐driven structural descriptor for predicting platinum‐based alloys as oxygen reduction electrocatalysts

过电位 杂原子 铂金 催化作用 电负性 氧还原 合金 材料科学 氧还原反应 化学 电化学 冶金 物理化学 电极 有机化学 戒指(化学)
作者
Xue Zhang,Zhuo Wang,Mukhtar Lawan Adam,Jiahong Wang,Chang‐Yu Hsieh,Chenru Duan,Cheng Heng Pang,Paul K. Chu,Xue‐Feng Yu,Haitao Zhao
出处
期刊:InfoMat [Wiley]
卷期号:5 (6) 被引量:22
标识
DOI:10.1002/inf2.12406
摘要

Abstract Owing to increasing global demand for carbon neutral and fossil‐free energy systems, extensive research is being conducted on efficient and inexpensive electrocatalysts for catalyzing the kinetically sluggish oxygen reduction reaction (ORR) at the cathode of fuel cells. Platinum (Pt)‐based alloys are considered promising candidates for replacing expensive Pt catalysts. However, the current screening process of Pt‐based alloys is time‐consuming and labor‐intensive, and the descriptor for predicting the activity of Pt‐based catalysts is generally inaccurate. This study proposed a strategy by combining high‐throughput first‐principles calculations and machine learning to explore the descriptor used for screening Pt‐based alloy catalysts with high Pt utilization and low Pt consumption. Among the 77 prescreened candidates, we identified 5 potential candidates for catalyzing ORR with low overpotential. Furthermore, during the second and third rounds of active learning, more Pt‐based alloys ORR candidates are identified based on the relationship between structural features of Pt‐based alloys and their activity. In addition, we highlighted the role of structural features in Pt‐based alloys and found that the difference between the electronegativity of Pt and heteroatom, the valence electrons number of the heteroatom, and the ratio of heteroatoms around Pt are the main factors that affect the activity of ORR. More importantly, the combination of those structural features can be used as structural descriptor for predicting the activity of Pt‐based alloys. We believe the findings of this study will provide new insight for predicting ORR activity and contribute to exploring Pt‐based electrocatalysts with high Pt utilization and low Pt consumption experimentally. image
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注白安发布了新的文献求助10
1秒前
1秒前
张小星完成签到,获得积分10
2秒前
11122发布了新的文献求助10
2秒前
万能图书馆应助落寞平萱采纳,获得10
4秒前
爆米花应助lijx采纳,获得10
4秒前
lzy_zzu发布了新的文献求助10
5秒前
满_1999发布了新的文献求助10
6秒前
6秒前
乐乐应助专注白安采纳,获得10
8秒前
情怀应助Cakes采纳,获得10
10秒前
葫芦发布了新的文献求助10
11秒前
HLT完成签到 ,获得积分10
11秒前
11秒前
称心曼安应助vicky采纳,获得10
11秒前
归海浩阑完成签到,获得积分10
11秒前
Bingtao_Lian完成签到 ,获得积分10
11秒前
天天向上完成签到 ,获得积分10
13秒前
纳格兰完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
善学以致用应助11122采纳,获得10
14秒前
lijx发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
DrJiang发布了新的文献求助10
21秒前
汉堡包应助葫芦采纳,获得10
21秒前
桐桐应助痴情的博超采纳,获得30
21秒前
22秒前
23秒前
唐亿倩完成签到,获得积分10
26秒前
昭谏发布了新的文献求助10
27秒前
28秒前
28秒前
HHHHHH完成签到 ,获得积分20
30秒前
zqw完成签到,获得积分10
31秒前
子车茗应助Snoopy采纳,获得20
31秒前
32秒前
32秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中国翻译词典 1000
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874952
求助须知:如何正确求助?哪些是违规求助? 3417415
关于积分的说明 10703334
捐赠科研通 3141782
什么是DOI,文献DOI怎么找? 1733599
邀请新用户注册赠送积分活动 836096
科研通“疑难数据库(出版商)”最低求助积分说明 782355