清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

COLosSAL: A Benchmark for Cold-start Active Learning for 3D Medical Image Segmentation

水准点(测量) 分割 计算机科学 注释 瓶颈 任务(项目管理) 编码(集合论) 深度学习 人工智能 集合(抽象数据类型) 机器学习 图像分割 情报检索 管理 大地测量学 程序设计语言 经济 嵌入式系统 地理
作者
Han Liu,Hao Li,Xing Yao,Yubo Fan,Dewei Hu,Benoît M. Dawant,Vishwesh Nath,Zhoubing Xu,İpek Oğuz
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.12004
摘要

Medical image segmentation is a critical task in medical image analysis. In recent years, deep learning based approaches have shown exceptional performance when trained on a fully-annotated dataset. However, data annotation is often a significant bottleneck, especially for 3D medical images. Active learning (AL) is a promising solution for efficient annotation but requires an initial set of labeled samples to start active selection. When the entire data pool is unlabeled, how do we select the samples to annotate as our initial set? This is also known as the cold-start AL, which permits only one chance to request annotations from experts without access to previously annotated data. Cold-start AL is highly relevant in many practical scenarios but has been under-explored, especially for 3D medical segmentation tasks requiring substantial annotation effort. In this paper, we present a benchmark named COLosSAL by evaluating six cold-start AL strategies on five 3D medical image segmentation tasks from the public Medical Segmentation Decathlon collection. We perform a thorough performance analysis and explore important open questions for cold-start AL, such as the impact of budget on different strategies. Our results show that cold-start AL is still an unsolved problem for 3D segmentation tasks but some important trends have been observed. The code repository, data partitions, and baseline results for the complete benchmark are publicly available at https://github.com/MedICL-VU/COLosSAL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Xiaoxiao举报繁荣的洋葱求助涉嫌违规
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
25秒前
34秒前
kmzzy完成签到,获得积分10
34秒前
范范发布了新的文献求助10
37秒前
53秒前
共享精神应助范范采纳,获得10
55秒前
Jodie发布了新的文献求助10
1分钟前
风起云涌龙完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
烟消云散完成签到,获得积分10
1分钟前
1分钟前
苗条的一一完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
小蘑菇应助Keylor采纳,获得10
2分钟前
2分钟前
熊猫小肿发布了新的文献求助10
2分钟前
范范完成签到,获得积分10
2分钟前
范范发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
传奇3应助zbzb采纳,获得50
3分钟前
3分钟前
3分钟前
towanda完成签到,获得积分10
3分钟前
lhl完成签到,获得积分10
3分钟前
Jodie发布了新的文献求助10
3分钟前
zxt完成签到,获得积分10
3分钟前
Jodie完成签到,获得积分10
3分钟前
所所应助科研通管家采纳,获得50
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833846
求助须知:如何正确求助?哪些是违规求助? 3376298
关于积分的说明 10492571
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771859