NeighborNet: Learning Intra- and Inter-Image Pixel Neighbor Representation for Breast Lesion Segmentation

计算机科学 人工智能 分割 像素 模式识别(心理学) 特征学习 特征(语言学) k-最近邻算法 代表(政治) 图像分割 计算机视觉 政治 政治学 法学 哲学 语言学
作者
Weiwei Cao,Jianfeng Guo,Xiaohui You,Yuxin Liu,Lei Li,Wenju Cui,Yuzhu Cao,Xinjian Chen,Jian Zheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4761-4771
标识
DOI:10.1109/jbhi.2024.3400802
摘要

Breast lesion segmentation from ultrasound images is essential in computer-aided breast cancer diagnosis. To alleviate the problems of blurry lesion boundaries and irregular morphologies, common practices combine CNN and attention to integrate global and local information. However, previous methods use two independent modules to extract global and local features separately, such feature-wise inflexible integration ignores the semantic gap between them, resulting in representation redundancy/insufficiency and undesirable restrictions in clinic practices. Moreover, medical images are highly similar to each other due to the imaging methods and human tissues, but the captured global information by transformer-based methods in the medical domain is limited within images, the semantic relations and common knowledge across images are largely ignored. To alleviate the above problems, in the neighbor view, this paper develops a pixel neighbor representation learning method (NeighborNet) to flexibly integrate global and local context within and across images for lesion morphology and boundary modeling. Concretely, we design two neighbor layers to investigate two properties (i.e., number and distribution) of neighbors. The neighbor number for each pixel is not fixed but determined by itself. The neighbor distribution is extended from one image to all images in the datasets. With the two properties, for each pixel at each feature level, the proposed NeighborNet can evolve into the transformer or degenerate into the CNN for adaptive context representation learning to cope with the irregular lesion morphologies and blurry boundaries. The state-of-the-art performances on three ultrasound datasets prove the effectiveness of the proposed NeighborNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助苏A尔采纳,获得10
1秒前
Aurora完成签到 ,获得积分10
2秒前
pray发布了新的文献求助10
2秒前
orixero应助aiminz采纳,获得10
2秒前
热心烙应助xiaojian_291采纳,获得10
2秒前
东风完成签到,获得积分10
2秒前
kimikoi发布了新的文献求助10
3秒前
大芳儿发布了新的文献求助10
3秒前
趣多多发布了新的文献求助10
3秒前
4秒前
bkagyin应助微笑的寒梦采纳,获得10
4秒前
冷傲的如柏完成签到,获得积分10
4秒前
4秒前
情怀应助enenen采纳,获得10
5秒前
liu完成签到,获得积分10
5秒前
Yi完成签到,获得积分10
5秒前
还是算了完成签到,获得积分10
5秒前
深情安青应助lzq采纳,获得10
6秒前
哈哈哈完成签到,获得积分10
6秒前
7秒前
Jack发布了新的文献求助20
7秒前
7秒前
8秒前
lighta0发布了新的文献求助10
8秒前
小马甲应助苗条的摇伽采纳,获得10
9秒前
忠玉完成签到,获得积分10
9秒前
小蘑菇应助如意草丛采纳,获得10
9秒前
科研通AI2S应助pray采纳,获得10
10秒前
xingxing发布了新的文献求助10
10秒前
10秒前
豪的花花完成签到,获得积分10
10秒前
Triumph发布了新的文献求助10
11秒前
英姑应助动听的笑南采纳,获得10
11秒前
123完成签到,获得积分0
11秒前
星辰大海应助tong采纳,获得10
12秒前
kimikoi完成签到,获得积分10
13秒前
14秒前
14秒前
背后老太完成签到,获得积分20
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621