有限元法
机身
结构工程
人工神经网络
复合数
序列(生物学)
特征(语言学)
基础(线性代数)
压力(语言学)
还原(数学)
边值问题
计算机科学
算法
材料科学
工程类
人工智能
数学
复合材料
几何学
数学分析
生物
遗传学
语言学
哲学
作者
Omar A.I. Azeem,S.T. Pinho
标识
DOI:10.1016/j.ijsolstr.2024.112946
摘要
Multifidelity global–local finite element (FE) analyses are typically used to predict damage initiation hotspots around repetitive design features in large composite structures, such as composite airframes. We propose the use of machine learning (ML) methods to accelerate these analyses. We demonstrate this ML assisted framework for the stress analysis of a hole in plate feature in an aerospace C-spar structure. To enable this framework, we develop the following original features: a computationally efficient sampling scheme; a work-equivalent boundary condition homogenisation scheme; a volume averaged ply-by-ply stress approach; and a sequential long-short term memory neural network reformulated from a time basis to a stacking sequence basis with further bi-directionality customisation. Overall, we show that the developed method results in high-accuracy prediction of 3D stresses, with over two orders of magnitude reduction in modelling and simulation time compared to FE analyses.
科研通智能强力驱动
Strongly Powered by AbleSci AI