Deep Learning Model for Cosmetic Gel Classification Based on a Short-Time Fourier Transform and Spectrogram

短时傅里叶变换 人工智能 深度学习 计算机科学 卷积神经网络 模式识别(心理学) 光谱图 傅里叶变换 连续小波变换 材料科学 稳健性(进化) 小波变换 小波 离散小波变换 傅里叶分析 数学 数学分析 化学 基因 生物化学
作者
Jae-Ho Sim,Jengsu Yoo,Myung Lae Lee,Sang Heon Han,Seok Kil Han,Jeong Yu Lee,Sung Won Yi,Jin Nam,Dong Soo Kim,Yong Suk Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (20): 25825-25835 被引量:2
标识
DOI:10.1021/acsami.4c03675
摘要

Cosmetics and topical medications, such as gels, foams, creams, and lotions, are viscoelastic substances that are applied to the skin or mucous membranes. The human perception of these materials is complex and involves multiple sensory modalities. Traditional panel-based sensory evaluations have limitations due to individual differences in sensory receptors and factors such as age, race, and gender. Therefore, this study proposes a deep-learning-based method for systematically analyzing and effectively identifying the physical properties of cosmetic gels. Time-series friction signals generated by rubbing the gels were measured. These signals were preprocessed through short-time Fourier transform (STFT) and continuous wavelet transform (CWT), respectively, and the frequency factors that change over time were distinguished and analyzed. The deep learning model employed a ResNet-based convolution neural network (CNN) structure with optimization achieved through a learning rate scheduler. The optimized STFT-based 2D CNN model outperforms the CWT-based 2D and 1D CNN models. The optimized STFT-based 2D CNN model also demonstrated robustness and reliability through k-fold cross-validation. This study suggests the potential for an innovative approach to replace traditional expert panel evaluations and objectively assess the user experience of cosmetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
慕青应助dwz采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得30
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得30
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
薇薇快跑发布了新的文献求助10
1秒前
桐桐应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
ohh发布了新的文献求助10
1秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
qcck完成签到,获得积分10
2秒前
2秒前
2秒前
明亮夏旋完成签到 ,获得积分10
2秒前
3秒前
3秒前
科研通AI5应助1234采纳,获得10
3秒前
枫崝应助溏心采纳,获得20
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
xyc完成签到 ,获得积分10
4秒前
思源应助伶俐的血茗采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5176838
求助须知:如何正确求助?哪些是违规求助? 4365647
关于积分的说明 13592793
捐赠科研通 4215590
什么是DOI,文献DOI怎么找? 2312075
邀请新用户注册赠送积分活动 1310905
关于科研通互助平台的介绍 1259044