FusionMamba: Dynamic Feature Enhancement for Multimodal Image Fusion with Mamba

特征(语言学) 图像(数学) 图像融合 融合 人工智能 计算机科学 计算机视觉 模式识别(心理学) 语言学 哲学
作者
Xinyu Xie,Yawen Cui,Chio-In Ieong,Tao Tan,Xiaozhi Zhang,Xubin Zheng,Zitong Yu
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2404.09498
摘要

Multi-modal image fusion aims to combine information from different modes to create a single image with comprehensive information and detailed textures. However, fusion models based on convolutional neural networks encounter limitations in capturing global image features due to their focus on local convolution operations. Transformer-based models, while excelling in global feature modeling, confront computational challenges stemming from their quadratic complexity. Recently, the Selective Structured State Space Model has exhibited significant potential for long-range dependency modeling with linear complexity, offering a promising avenue to address the aforementioned dilemma. In this paper, we propose FusionMamba, a novel dynamic feature enhancement method for multimodal image fusion with Mamba. Specifically, we devise an improved efficient Mamba model for image fusion, integrating efficient visual state space model with dynamic convolution and channel attention. This refined model not only upholds the performance of Mamba and global modeling capability but also diminishes channel redundancy while enhancing local enhancement capability. Additionally, we devise a dynamic feature fusion module (DFFM) comprising two dynamic feature enhancement modules (DFEM) and a cross modality fusion mamba module (CMFM). The former serves for dynamic texture enhancement and dynamic difference perception, whereas the latter enhances correlation features between modes and suppresses redundant intermodal information. FusionMamba has yielded state-of-the-art (SOTA) performance across various multimodal medical image fusion tasks (CT-MRI, PET-MRI, SPECT-MRI), infrared and visible image fusion task (IR-VIS) and multimodal biomedical image fusion dataset (GFP-PC), which is proved that our model has generalization ability. The code for FusionMamba is available at https://github.com/millieXie/FusionMamba.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜梨完成签到 ,获得积分10
1秒前
1秒前
刘十六发布了新的文献求助10
1秒前
2秒前
2秒前
小小完成签到 ,获得积分10
2秒前
2秒前
高贵香发布了新的文献求助10
3秒前
zxf完成签到,获得积分20
3秒前
张子珍完成签到,获得积分10
3秒前
谢峥嵘发布了新的文献求助10
3秒前
许win完成签到,获得积分10
3秒前
4秒前
充电宝应助安静的难破采纳,获得10
4秒前
4秒前
SWD完成签到,获得积分10
5秒前
5秒前
taozi发布了新的文献求助20
5秒前
陈陈陈发布了新的文献求助10
6秒前
6秒前
失眠振家发布了新的文献求助10
6秒前
rr_完成签到,获得积分20
6秒前
脑洞疼应助学术智子采纳,获得10
7秒前
脑洞疼应助虚幻盼雁采纳,获得10
7秒前
玉玉发布了新的文献求助10
7秒前
张子珍发布了新的文献求助10
7秒前
小勉完成签到,获得积分10
7秒前
59发布了新的文献求助10
7秒前
WZ完成签到,获得积分10
8秒前
8秒前
咕噜咕噜噜熊完成签到,获得积分10
8秒前
9秒前
在水一方应助复杂硬币采纳,获得10
9秒前
炙热的凌寒完成签到 ,获得积分10
9秒前
完美世界应助通~采纳,获得10
9秒前
盛夏蔚来发布了新的文献求助10
10秒前
rr_发布了新的文献求助10
10秒前
renpp822发布了新的文献求助10
10秒前
SciGPT应助刘十六采纳,获得10
11秒前
顾矜应助xiao采纳,获得10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786195
求助须知:如何正确求助?哪些是违规求助? 3331852
关于积分的说明 10252592
捐赠科研通 3047153
什么是DOI,文献DOI怎么找? 1672437
邀请新用户注册赠送积分活动 801287
科研通“疑难数据库(出版商)”最低求助积分说明 760140