Graph Contrastive Learning for Tracking Dynamic Communities in Temporal Networks

计算机科学 图形 跟踪(教育) 人工智能 理论计算机科学 心理学 教育学
作者
Yun Ai,Xianghua Xie,Xiaoke Ma
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 3422-3435 被引量:5
标识
DOI:10.1109/tetci.2024.3386844
摘要

Temporal networks are ubiquitous because complex systems in nature and society are evolving, and tracking dynamic communities is critical for revealing the mechanism of systems. Moreover, current algorithms utilize temporal smoothness framework to balance clustering accuracy at current time and clustering drift at historical time, which are criticized for failing to characterize the temporality of networks and determine its importance. To overcome these problems, we propose a novel algorithm by j oining N on-negative matrix factorization and C ontrastive learning for D ynamic C ommunity detection (jNCDC). Specifically, jNCDC learns the features of vertices by projecting successive snapshots into a shared subspace to learn the low-dimensional representation of vertices with matrix factorization. Subsequently, it constructs an evolution graph to explicitly measure relations of vertices by representing vertices at current time with features at historical time, paving a way to characterize the dynamics of networks at the vertex-level. Finally, graph contrastive learning utilizes the roles of vertices to select positive and negative samples to further improve the quality of features. These procedures are seamlessly integrated into an overall objective function, and optimization rules are deduced. To the best of our knowledge, jNCDC is the first graph contrastive learning for dynamic community detection, that provides an alternative for the current temporal smoothness framework. Experimental results demonstrate that jNCDC is superior to the state-of-the-art approaches in terms of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助半晴采纳,获得10
刚刚
Akim应助fmax采纳,获得10
1秒前
rep2021完成签到,获得积分10
1秒前
柒柒发布了新的文献求助10
2秒前
2秒前
无花果应助ww采纳,获得10
3秒前
Matt发布了新的文献求助10
5秒前
鱼鱼鱼完成签到,获得积分10
5秒前
5秒前
6秒前
向银博发布了新的文献求助10
6秒前
6秒前
6秒前
对苏发布了新的文献求助10
7秒前
7秒前
LZT发布了新的文献求助10
7秒前
小马甲应助年糕.采纳,获得10
8秒前
hea完成签到,获得积分10
8秒前
watermanlo完成签到,获得积分10
8秒前
8秒前
qdong完成签到,获得积分10
9秒前
9秒前
摸鱼鱼发布了新的文献求助10
9秒前
9秒前
陈漂亮完成签到,获得积分10
10秒前
希望天下0贩的0应助柒柒采纳,获得10
10秒前
脑洞疼应助子衿采纳,获得10
10秒前
莫问发布了新的文献求助10
10秒前
Simone完成签到,获得积分10
10秒前
领导范儿应助giant_panda采纳,获得10
11秒前
思源应助ZM采纳,获得10
11秒前
搜集达人应助白紫莹采纳,获得10
11秒前
眯眯眼的觅双完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
XY发布了新的文献求助10
13秒前
Simone发布了新的文献求助10
13秒前
FelixZhou完成签到,获得积分10
14秒前
甜蜜靖雁发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655064
求助须知:如何正确求助?哪些是违规求助? 4796943
关于积分的说明 15071571
捐赠科研通 4813634
什么是DOI,文献DOI怎么找? 2575243
邀请新用户注册赠送积分活动 1530632
关于科研通互助平台的介绍 1489263