Generation of synthetic PET/MR fusion images from MR images using a combination of generative adversarial networks and conditional denoising diffusion probabilistic models based on simultaneous 18F-FDG PET/MR image data of pyogenic spondylodiscitis

人工智能 正电子发射断层摄影术 图像融合 模式识别(心理学) 计算机科学 基本事实 均方误差 合成数据 图像配准 相似性(几何) 核医学 数学 医学 图像(数学) 统计
作者
Euijin Jung,Eunjung Kong,Dongwoo Yu,Heesung Yang,Philip Chicontwe,Sang Hyun Park,Ikchan Jeon
出处
期刊:The Spine Journal [Elsevier]
卷期号:24 (8): 1467-1477 被引量:1
标识
DOI:10.1016/j.spinee.2024.04.007
摘要

Cross-modality image generation from magnetic resonance (MR) to positron emission tomography (PET) using the generative model can be expected to have complementary effects by addressing the limitations and maximizing the advantages inherent in each modality.This study aims to generate synthetic PET/MR fusion images from MR images using a combination of generative adversarial networks (GANs) and conditional denoising diffusion probabilistic models (cDDPMs) based on simultaneous 18F-fluorodeoxyglucose (18F-FDG) PET/MR image data.Retrospective study with prospectively collected clinical and radiological data.This study included 94 patients (60 men and 34 women) with thoraco-lumbar pyogenic spondylodiscitis (PSD) from February 2017 to January 2020 in a single tertiary institution.Quantitative and qualitative image similarity were analyzed between the real and synthetic PET/ T2-weighted fat saturation MR (T2FS) fusion images on the test data set.We used paired spinal sagittal T2FS and PET/T2FS fusion images of simultaneous 18F-FDG PET/MR imaging examination in patients with PSD, which were employed to generate synthetic PET/T2FS fusion images from T2FS images using a combination of Pix2Pix (U-Net generator + Least Squares GANs discriminator) and cDDPMs algorithms. In the analyses of image similarity between the real and synthetic PET/T2FS fusion images, we adopted the values of mean peak signal to noise ratio (PSNR), mean structural similarity measurement (SSIM), mean absolute error (MAE), and mean squared error (MSE) for quantitative analysis, while the discrimination accuracy by three spine surgeons was applied for qualitative analysis.Total 2082 pairs of T2FS and PET/T2FS fusion images were obtained from 172 examinations on 94 patients, which were randomly assigned to training, validation, and test data sets in 8:1:1 ratio (1664, 209, and 209 pairs). The quantitative analysis revealed PSNR of 30.634 ± 3.437, SSIM of 0.910 ± 0.067, MAE of 0.017 ± 0.008, and MSE of 0.001 ± 0.001, respectively. The values of PSNR, MAE, and MSE significantly decreased as FDG uptake increase in real PET/T2FS fusion image, with no significant correlation on SSIM. In the qualitative analysis, the overall discrimination accuracy between real and synthetic PET/T2FS fusion images was 47.4%.The combination of Pix2Pix and cDDPMs demonstrated the potential for cross-modal image generation from MR to PET images, with reliable quantitative and qualitative image similarities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助highkick采纳,获得10
1秒前
3秒前
彤T246发布了新的文献求助10
3秒前
小老板完成签到,获得积分10
4秒前
4秒前
4秒前
耶布达完成签到 ,获得积分10
5秒前
Why_123完成签到,获得积分10
6秒前
白桃战士发布了新的文献求助10
6秒前
628完成签到,获得积分10
8秒前
小鹿完成签到,获得积分10
9秒前
10秒前
勤恳依琴完成签到 ,获得积分10
10秒前
张sjb完成签到,获得积分10
12秒前
吴茂林发布了新的文献求助10
13秒前
13秒前
负责戎完成签到,获得积分10
13秒前
思源应助wang采纳,获得10
14秒前
15秒前
刻苦惜萍发布了新的文献求助10
15秒前
捷jie发布了新的文献求助30
16秒前
17秒前
17秒前
研友_VZG7GZ应助的士速递采纳,获得10
17秒前
ding完成签到,获得积分10
18秒前
向日葵完成签到,获得积分10
18秒前
如意慕蕊发布了新的文献求助10
19秒前
感动的雁枫完成签到 ,获得积分10
20秒前
DDDD发布了新的文献求助10
20秒前
Criminology34应助负责的方盒采纳,获得10
21秒前
kangkang完成签到,获得积分10
21秒前
---发布了新的文献求助10
23秒前
Dannerys完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
ncut完成签到,获得积分10
25秒前
fbl完成签到,获得积分10
28秒前
orixero应助刻苦惜萍采纳,获得30
28秒前
ding应助王小敏敏儿采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434387
求助须知:如何正确求助?哪些是违规求助? 4546683
关于积分的说明 14203721
捐赠科研通 4466645
什么是DOI,文献DOI怎么找? 2448251
邀请新用户注册赠送积分活动 1439061
关于科研通互助平台的介绍 1415945